Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2017_22_1_a2, author = {M. K. Ilienko}, title = {A note on the {Kolmogorov--Marcinkiewicz--Zygmund} type strong law of large numbers for elements of autoregression sequences}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {22--29}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a2/} }
TY - JOUR AU - M. K. Ilienko TI - A note on the Kolmogorov--Marcinkiewicz--Zygmund type strong law of large numbers for elements of autoregression sequences JO - Teoriâ slučajnyh processov PY - 2017 SP - 22 EP - 29 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a2/ LA - en ID - THSP_2017_22_1_a2 ER -
%0 Journal Article %A M. K. Ilienko %T A note on the Kolmogorov--Marcinkiewicz--Zygmund type strong law of large numbers for elements of autoregression sequences %J Teoriâ slučajnyh processov %D 2017 %P 22-29 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a2/ %G en %F THSP_2017_22_1_a2
M. K. Ilienko. A note on the Kolmogorov--Marcinkiewicz--Zygmund type strong law of large numbers for elements of autoregression sequences. Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 22-29. http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a2/
[1] A. de Acosta, “Inequalities for $B$-valued random vectors with applications to the law of large numbers”, Ann.Probab., 9 (1981), 157–161 | DOI | MR | Zbl
[2] Theory Probab. Appl., 26, 573–580 | DOI | MR | Zbl
[3] V. V. Buldygin, S. A. Solntsev, Asymptotic behavior of linearly transformed sums of random variables, Kluwer Academic Publishers, Dordrecht, 1997 | MR
[4] M. Runovska, “The convergence of series whose terms are elements of multidimensional Gaussian Markov sequences”, Theor. Probability and Math. Statist., 84 (2012), 139–150 | DOI | MR | Zbl
[5] V. Buldygin, M. Runovska (M. Ilienko), Sums whose terms are elements of linear random regression sequences, Lambert Academic Publishing, 2014
[6] Deli Li, Yongcheng Qi, A. Rosalsky, “A refinement of the Kolmogorov-Marcinkiewicz-Zygmund strong law of large numbers”, J. Theor. Probab., 24 (2011), 1130–1156 | DOI | MR | Zbl
[7] A. Gut, “A contribution to the theory of asymptotic martingales”, Glasg. Math.J., 23 (1982), 177–186 | DOI | MR | Zbl
[8] F. Hechner, B. Heinkel, “The Marcinkiewicz-Zygmund LLN in Banach spaces: a generalized martingale approach”, J. Theor. Probab., 23 (2010), 509–522 | DOI | MR | Zbl
[9] M. Ilienko, “A refinement of conditions for the almost sure convergence of series of multidimensional regression sequences”, Theor. Probability and Math. Statist., 93 (2016), 71–78 | DOI | MR | Zbl
[10] J. P. Kahane, Some random series of functions, Cambridge Univ. Press, Heath, Cambridge, 1985 | MR | Zbl
[11] A. Kolmogorov, “Sur la loi forte des grands nombres”, C.R. Acad. Sci. Paris., 191:20 (1930), 910–912
[12] J. Marcinkiewicz, A. Zygmund, “Sur les fonctions independantes”, Fund. Mat., 29 (1937), 60–90 | MR
[13] E. Mourier, “Eléments aléatoires dans un espace de Banach”, Ann. Inst. H. Poincaré, 19 (1953), 161–244 | MR