Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2017_22_1_a0, author = {A. Boumahdaf}, title = {A simple analysis of a {D/GI/1} vacation queue with impatient customers}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {1--15}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a0/} }
A. Boumahdaf. A simple analysis of a D/GI/1 vacation queue with impatient customers. Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a0/
[1] E. Altman, U. Yechiali, “Analysis of customers' impatience in queues with server vacations”, Queueing Systems. Theory and Applications, 52:4 (2006), 261–279 | DOI | MR | Zbl
[2] S. Asmussen, Applied probability and queues, Applications of Mathematics, 51, Second Edition, Springer-Verlag, New York, 2003 | MR | Zbl
[3] F. Bacelli, P. Boyer, G. Hébuterne, “Single-server queues with impatient customers”, Advances in Applied Probability, 16:4 (1984), 887–905 | DOI | MR
[4] D. J. Daley, “General customer impatience in the queue $GI/G/1$”, Journal of Applied Probability, 2 (1965), 186–205 | DOI | MR | Zbl
[5] W. Feller, An introduction to probability theory and its applications, v. I, Third edition, John Wiley $\$ Sons, Inc., New York-London-Sydney, 1968 | MR | Zbl
[6] P. D. Finch, “Deterministic customer impatience in the queueing system $GI/M/1$”, Biometrika, 47 (1960), 45–52 | DOI | MR | Zbl
[7] P. D. Finch, “Deterministic customer impatience in the queueing system $GI/M/1;$ a correction”, Biometrika, 48 (1961), 472–473 | DOI | MR | Zbl
[8] A. Ghosal, “Queues with finite waiting time”, Operations Research, 11 (1963), 919–921 | DOI | MR | Zbl
[9] A. Ghosal, Some aspects of queueing and storage systems, Lecture Notes in Operations Research and Mathematical Systems, 23, Springer-Verlag, Berlin-New York, 1970 | MR
[10] T. Katayama, “Some results for vacation systems with sojourn time limits”, Journal of Applied Probability, 48 (2011), 679–687 | DOI | MR | Zbl
[11] T. Katayama, “A note on M/G/1 vacation systems with sojourn time limits”, Journal of Applied Probability, 49 (2012), 1194–1199 | DOI | MR | Zbl
[12] D. V. Lindley, “The theory of queues with a single server”, Proc. Cambridge Philos Soc., 48 (1952), 277–289 | DOI | MR
[13] M. Loève, Probability theory, v. I, Graduate Texts in Mathematics, 45, fourth edition, Springer-Verlag, New York-Heidelberg, 1977 | MR | Zbl
[14] R. E. Stanford, “Reneging phenomena in single channel queues”, Mathematics of Operations Research, 4:2 (1979), 162–178 | DOI | MR | Zbl
[15] T. Takine, T. Hasegawa, “A note on $M/G/1$ vacation systems with waiting time limits”, Advances in Applied Probability, 22:2 (1990), 513–518 | DOI | MR | Zbl
[16] F. A. van der Duyn Schouten, “An $M/G/1$ queueing model with vacation times”, Zeitschrift für Operations Research. Serie A. Serie B, 22:3 (1978), A95–A105 | MR
[17] A. R. Ward, P. W. Glynn, “A diffusion approximation for a $GI/GI/1$ queue with balking or reneging”, Queueing Systems. Theory and Applications, 50 (2005), 371–400 | DOI | MR | Zbl