A simple analysis of a D/GI/1 vacation queue with impatient customers
Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 1-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we deal with an D/GI/1 vacation system with impatient customers. We give a sufficient condition for the existence of a limit distribution of the waiting time and integral equations are derived in both reneging and balking scenarios. Explicit solutions are given when vacation times are exponentially distributed and service times are either exponentially distributed or deterministic.
Keywords: Vacation system, balking, reneging, integral equation.
Mots-clés : Laplace transform
@article{THSP_2017_22_1_a0,
     author = {A. Boumahdaf},
     title = {A simple analysis of a {D/GI/1} vacation queue with impatient customers},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a0/}
}
TY  - JOUR
AU  - A. Boumahdaf
TI  - A simple analysis of a D/GI/1 vacation queue with impatient customers
JO  - Teoriâ slučajnyh processov
PY  - 2017
SP  - 1
EP  - 15
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a0/
LA  - en
ID  - THSP_2017_22_1_a0
ER  - 
%0 Journal Article
%A A. Boumahdaf
%T A simple analysis of a D/GI/1 vacation queue with impatient customers
%J Teoriâ slučajnyh processov
%D 2017
%P 1-15
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a0/
%G en
%F THSP_2017_22_1_a0
A. Boumahdaf. A simple analysis of a D/GI/1 vacation queue with impatient customers. Teoriâ slučajnyh processov, Tome 22 (2017) no. 1, pp. 1-15. http://geodesic.mathdoc.fr/item/THSP_2017_22_1_a0/

[1] E. Altman, U. Yechiali, “Analysis of customers' impatience in queues with server vacations”, Queueing Systems. Theory and Applications, 52:4 (2006), 261–279 | DOI | MR | Zbl

[2] S. Asmussen, Applied probability and queues, Applications of Mathematics, 51, Second Edition, Springer-Verlag, New York, 2003 | MR | Zbl

[3] F. Bacelli, P. Boyer, G. Hébuterne, “Single-server queues with impatient customers”, Advances in Applied Probability, 16:4 (1984), 887–905 | DOI | MR

[4] D. J. Daley, “General customer impatience in the queue $GI/G/1$”, Journal of Applied Probability, 2 (1965), 186–205 | DOI | MR | Zbl

[5] W. Feller, An introduction to probability theory and its applications, v. I, Third edition, John Wiley $\$ Sons, Inc., New York-London-Sydney, 1968 | MR | Zbl

[6] P. D. Finch, “Deterministic customer impatience in the queueing system $GI/M/1$”, Biometrika, 47 (1960), 45–52 | DOI | MR | Zbl

[7] P. D. Finch, “Deterministic customer impatience in the queueing system $GI/M/1;$ a correction”, Biometrika, 48 (1961), 472–473 | DOI | MR | Zbl

[8] A. Ghosal, “Queues with finite waiting time”, Operations Research, 11 (1963), 919–921 | DOI | MR | Zbl

[9] A. Ghosal, Some aspects of queueing and storage systems, Lecture Notes in Operations Research and Mathematical Systems, 23, Springer-Verlag, Berlin-New York, 1970 | MR

[10] T. Katayama, “Some results for vacation systems with sojourn time limits”, Journal of Applied Probability, 48 (2011), 679–687 | DOI | MR | Zbl

[11] T. Katayama, “A note on M/G/1 vacation systems with sojourn time limits”, Journal of Applied Probability, 49 (2012), 1194–1199 | DOI | MR | Zbl

[12] D. V. Lindley, “The theory of queues with a single server”, Proc. Cambridge Philos Soc., 48 (1952), 277–289 | DOI | MR

[13] M. Loève, Probability theory, v. I, Graduate Texts in Mathematics, 45, fourth edition, Springer-Verlag, New York-Heidelberg, 1977 | MR | Zbl

[14] R. E. Stanford, “Reneging phenomena in single channel queues”, Mathematics of Operations Research, 4:2 (1979), 162–178 | DOI | MR | Zbl

[15] T. Takine, T. Hasegawa, “A note on $M/G/1$ vacation systems with waiting time limits”, Advances in Applied Probability, 22:2 (1990), 513–518 | DOI | MR | Zbl

[16] F. A. van der Duyn Schouten, “An $M/G/1$ queueing model with vacation times”, Zeitschrift für Operations Research. Serie A. Serie B, 22:3 (1978), A95–A105 | MR

[17] A. R. Ward, P. W. Glynn, “A diffusion approximation for a $GI/GI/1$ queue with balking or reneging”, Queueing Systems. Theory and Applications, 50 (2005), 371–400 | DOI | MR | Zbl