Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2016_21_2_a6, author = {G. V. Riabov}, title = {A representation for the {Kantorovich--Rubinstein} distance defined by the {Cameron--Martin} norm of a {Gaussian} measure on a {Banach} space}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {84--90}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/} }
TY - JOUR AU - G. V. Riabov TI - A representation for the Kantorovich--Rubinstein distance defined by the Cameron--Martin norm of a Gaussian measure on a Banach space JO - Teoriâ slučajnyh processov PY - 2016 SP - 84 EP - 90 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/ LA - en ID - THSP_2016_21_2_a6 ER -
%0 Journal Article %A G. V. Riabov %T A representation for the Kantorovich--Rubinstein distance defined by the Cameron--Martin norm of a Gaussian measure on a Banach space %J Teoriâ slučajnyh processov %D 2016 %P 84-90 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/ %G en %F THSP_2016_21_2_a6
G. V. Riabov. A representation for the Kantorovich--Rubinstein distance defined by the Cameron--Martin norm of a Gaussian measure on a Banach space. Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 84-90. http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/