A representation for the Kantorovich--Rubinstein distance defined by the Cameron--Martin norm of a Gaussian measure on a Banach space
Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 84-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

A representation for the Kantorovich–Rubinstein distance between probability measures on a separable Banach space $X$ in the case when this distance is defined by the Cameron–Martin norm of a centered Gaussian measure $\mu$ on $X$ is obtained in terms of the extended stochastic integral (or divergence) operator.
Keywords: Gaussian measure, extended stochastic integral
Mots-clés : optimal transport.
@article{THSP_2016_21_2_a6,
     author = {G. V. Riabov},
     title = {A representation for the {Kantorovich--Rubinstein} distance defined by the {Cameron--Martin} norm of a {Gaussian} measure on a {Banach} space},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {84--90},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/}
}
TY  - JOUR
AU  - G. V. Riabov
TI  - A representation for the Kantorovich--Rubinstein distance defined by the Cameron--Martin norm of a Gaussian measure on a Banach space
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 84
EP  - 90
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/
LA  - en
ID  - THSP_2016_21_2_a6
ER  - 
%0 Journal Article
%A G. V. Riabov
%T A representation for the Kantorovich--Rubinstein distance defined by the Cameron--Martin norm of a Gaussian measure on a Banach space
%J Teoriâ slučajnyh processov
%D 2016
%P 84-90
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/
%G en
%F THSP_2016_21_2_a6
G. V. Riabov. A representation for the Kantorovich--Rubinstein distance defined by the Cameron--Martin norm of a Gaussian measure on a Banach space. Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 84-90. http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/

[1] C. Villani, Topics in Optimal Transportation, American Mathematical Society, Providence, Rhode Island, 2003

[2] A. A. Dorogovtsev, O. L. Izyumtseva, G. V. Riabov, N. Salhi, “Clark formula for local time for one class of Gaussian processes”, Communications on Stochastic Analysis, 10:2 (2016), 195–217

[3] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer–Verlag, Berlin, 1999

[4] J. Lehec, “Representation formula for the entropy and functional inequalities”, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 49:3 (2013), 885–899

[5] H. Föllmer, “An entropy approach to the time reversal of diffusion processes”, Stochastic Differential Systems Filtering and Control, eds. M. Metivier, E. Pardoux, Springer, Berlin, 156–163

[6] D. Feyel, A. S. Üstünel, “Monge-Kantorovitch measure transportation and Monge-Ampere equation on Wiener space”, Probability theory and related fields, 128:3 (2004), 347–385

[7] D. Nualart, The Malliavin calculus and related topics, Springer, Berlin, 2006

[8] F. Cavalletti, “The Monge problem in Wiener space”, Calc. Var. Partial Differential Equations, 45:1–2 (2012), 101–124

[9] V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and prospects”, Russian Math. Surveys, 67:5 (2012), 785–890

[10] V. I. Bogachev, Gaussian Measures, American Mathematical Society, Providence, Rhode Island, 1998

[11] L. Ambrosio, N. Gigli, D. Savaré, Gradient flows: in metric spaces and in the space of probability measures, Springer Science Business Media, Berlin, 2008

[12] M.–K. von Renesse, K.–Th. Sturm, “Transport inequalities, gradient estimates, entropy and Ricci curvature”, Communications on pure and applied mathematics, 58:7 (2005), 923–940

[13] Sh. Fang, J. Shao, K.–Th. Sturm, “Wasserstein space over the Wiener space”, Probability theory and related fields, 146:3–4 (2010), 535–565

[14] V. Nolot, Convexities and optimal transport problems on the Wiener space, Doctoral dissertation, Université de Bourgogne, 2013

[15] Sh. Fang, V. Nolot, “Optimal transport maps on infinite dimensional spaces”, Frontiers of Mathematics in China, 10:4 (2015), 715–732

[16] A. V. Skorokhod, “On a generalization of a stochastic integral”, Theory of Probability Its Applications, 20:2 (1976), 219–233

[17] L. Ambrosio, Lecture notes on optimal transport problems, Springer, Berlin, 2003