A representation for the Kantorovich--Rubinstein distance defined by the Cameron--Martin norm of a Gaussian measure on a Banach space
Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 84-90

Voir la notice de l'article provenant de la source Math-Net.Ru

A representation for the Kantorovich–Rubinstein distance between probability measures on a separable Banach space $X$ in the case when this distance is defined by the Cameron–Martin norm of a centered Gaussian measure $\mu$ on $X$ is obtained in terms of the extended stochastic integral (or divergence) operator.
Keywords: Gaussian measure, extended stochastic integral
Mots-clés : optimal transport.
@article{THSP_2016_21_2_a6,
     author = {G. V. Riabov},
     title = {A representation for the {Kantorovich--Rubinstein} distance defined by the {Cameron--Martin} norm of a {Gaussian} measure on a {Banach} space},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {84--90},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/}
}
TY  - JOUR
AU  - G. V. Riabov
TI  - A representation for the Kantorovich--Rubinstein distance defined by the Cameron--Martin norm of a Gaussian measure on a Banach space
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 84
EP  - 90
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/
LA  - en
ID  - THSP_2016_21_2_a6
ER  - 
%0 Journal Article
%A G. V. Riabov
%T A representation for the Kantorovich--Rubinstein distance defined by the Cameron--Martin norm of a Gaussian measure on a Banach space
%J Teoriâ slučajnyh processov
%D 2016
%P 84-90
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/
%G en
%F THSP_2016_21_2_a6
G. V. Riabov. A representation for the Kantorovich--Rubinstein distance defined by the Cameron--Martin norm of a Gaussian measure on a Banach space. Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 84-90. http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/