Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2016_21_2_a6, author = {G. V. Riabov}, title = {A representation for the {Kantorovich--Rubinstein} distance defined by the {Cameron--Martin} norm of a {Gaussian} measure on a {Banach} space}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {84--90}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/} }
TY - JOUR AU - G. V. Riabov TI - A representation for the Kantorovich--Rubinstein distance defined by the Cameron--Martin norm of a Gaussian measure on a Banach space JO - Teoriâ slučajnyh processov PY - 2016 SP - 84 EP - 90 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/ LA - en ID - THSP_2016_21_2_a6 ER -
%0 Journal Article %A G. V. Riabov %T A representation for the Kantorovich--Rubinstein distance defined by the Cameron--Martin norm of a Gaussian measure on a Banach space %J Teoriâ slučajnyh processov %D 2016 %P 84-90 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/ %G en %F THSP_2016_21_2_a6
G. V. Riabov. A representation for the Kantorovich--Rubinstein distance defined by the Cameron--Martin norm of a Gaussian measure on a Banach space. Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 84-90. http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a6/
[1] C. Villani, Topics in Optimal Transportation, American Mathematical Society, Providence, Rhode Island, 2003
[2] A. A. Dorogovtsev, O. L. Izyumtseva, G. V. Riabov, N. Salhi, “Clark formula for local time for one class of Gaussian processes”, Communications on Stochastic Analysis, 10:2 (2016), 195–217
[3] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer–Verlag, Berlin, 1999
[4] J. Lehec, “Representation formula for the entropy and functional inequalities”, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 49:3 (2013), 885–899
[5] H. Föllmer, “An entropy approach to the time reversal of diffusion processes”, Stochastic Differential Systems Filtering and Control, eds. M. Metivier, E. Pardoux, Springer, Berlin, 156–163
[6] D. Feyel, A. S. Üstünel, “Monge-Kantorovitch measure transportation and Monge-Ampere equation on Wiener space”, Probability theory and related fields, 128:3 (2004), 347–385
[7] D. Nualart, The Malliavin calculus and related topics, Springer, Berlin, 2006
[8] F. Cavalletti, “The Monge problem in Wiener space”, Calc. Var. Partial Differential Equations, 45:1–2 (2012), 101–124
[9] V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and prospects”, Russian Math. Surveys, 67:5 (2012), 785–890
[10] V. I. Bogachev, Gaussian Measures, American Mathematical Society, Providence, Rhode Island, 1998
[11] L. Ambrosio, N. Gigli, D. Savaré, Gradient flows: in metric spaces and in the space of probability measures, Springer Science Business Media, Berlin, 2008
[12] M.–K. von Renesse, K.–Th. Sturm, “Transport inequalities, gradient estimates, entropy and Ricci curvature”, Communications on pure and applied mathematics, 58:7 (2005), 923–940
[13] Sh. Fang, J. Shao, K.–Th. Sturm, “Wasserstein space over the Wiener space”, Probability theory and related fields, 146:3–4 (2010), 535–565
[14] V. Nolot, Convexities and optimal transport problems on the Wiener space, Doctoral dissertation, Université de Bourgogne, 2013
[15] Sh. Fang, V. Nolot, “Optimal transport maps on infinite dimensional spaces”, Frontiers of Mathematics in China, 10:4 (2015), 715–732
[16] A. V. Skorokhod, “On a generalization of a stochastic integral”, Theory of Probability Its Applications, 20:2 (1976), 219–233
[17] L. Ambrosio, Lecture notes on optimal transport problems, Springer, Berlin, 2003