Convoluted Brownian motion: a semimartingale approach
Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 58-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we analyse semimartingale properties of a class of Gaussian periodic processes, called convoluted Brownian motions, obtained by convolution between a deterministic function and a Brownian motion. A classical example in this class is the periodic Ornstein-Uhlenbeck process. We compute their characteristics and show that in general, they are never Markovian nor satisfy a time-Markov field property. Nevertheless, by enlargement of filtration and/or addition of a one-dimensional component, one can in some case recover the Markovianity. We treat exhaustively the case of the bidimensional trigonometric convoluted Brownian motion and the multidimensional monomial convoluted Brownian motion.
Keywords: Periodic Gaussian process, periodic Ornstein-Uhlenbeck process, Markov-field property
Mots-clés : enlargement of filtration.
@article{THSP_2016_21_2_a5,
     author = {Sylvie R{\oe}lly and Pierre Vallois},
     title = {Convoluted {Brownian} motion: a semimartingale approach},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {58--83},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a5/}
}
TY  - JOUR
AU  - Sylvie Rœlly
AU  - Pierre Vallois
TI  - Convoluted Brownian motion: a semimartingale approach
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 58
EP  - 83
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a5/
LA  - en
ID  - THSP_2016_21_2_a5
ER  - 
%0 Journal Article
%A Sylvie Rœlly
%A Pierre Vallois
%T Convoluted Brownian motion: a semimartingale approach
%J Teoriâ slučajnyh processov
%D 2016
%P 58-83
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a5/
%G en
%F THSP_2016_21_2_a5
Sylvie Rœlly; Pierre Vallois. Convoluted Brownian motion: a semimartingale approach. Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 58-83. http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a5/

[1] J-P. Carmichael, J-C. Masse, R. Theodorescu, “Processus gaussiens stationnaires réciproques sur un intervalle”, C.R. Acad. Sc. Paris, Série I, 295 (1982), 291–293

[2] C. Donati-Martin, “Equations stochastiques dans”, Stochastics and Stochastics Reports, 35 (1988), 143–173

[3] C. Dellacherie, P.-A. Meyer, Probabilités et Potentiel, v. II, Théorie des Martingales, Hermann, Paris, 1980

[4] C. Donati-Martin, “Equations différentielles stochastiques dans $\mathbb{R}$ avec conditions aux bords”, Stochastics and Stochastics Reports, 35 (1988), 143–173

[5] J. Doob, Stochastic processes, Wiley, 1953

[6] B. Jamison, “Reciprocal processes: The stationary gaussian case”, Ann. Math. Statist., 41 (1970), 1624–1630

[7] B. Jamison, “Reciprocal processes”, Z. Warsch. Verw. Geb., 30 (1974), 65–86

[8] H. Kwakernaak, “Periodic linear differential stochastic processes”, SIAM J. Control Optimization, 13 (1975), 400–413

[9] A. J. Krener, R. Frezza, C. B. Levy, “Gaussian reciprocal processes and self-adjoint stochastic differential equations of second order”, Stochastics and Stoch. Reports, 34 (1991), 29–56

[10] C. Léonard, S. Rœlly, J.-C. Zambrini, “Reciprocal processes. A measure-theoretical point of view”, Probab. Surveys, 11 (2014), 237–269

[11] P.-A. Meyer, Probabilités et Potentiel, Hermann, Paris, 1966

[12] D. Nualart, E. Pardoux, “Boundary value problems for Stochastic Differential Equations”, Annals of Probab., 19:3 (1991), 1118–1144

[13] D. Ocone, E. Pardoux, “Linear Stochastic Differential Equations with Boundary Conditions”, Probab. Th. Rel. Fields, 82 (1989), 489–526

[14] J. Pedersen, “Periodic Ornstein-Uhlenbeck processes driven by Levy processes”, Journal of applied probability, 39:4 (2002), 748–763

[15] S. Rœlly, M. Thieullen, “A characterization of reciprocal processes via an integration by parts formula on the path space”, Probab. Th. Rel. Fields, 123 (2002), 97–120

[16] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1991

[17] F. Russo, P. Vallois, “Elements of stochastic calculus via regularization”, Séminaire de Probabilités XL, LNM 1899, Springer-Verlag, 2007, 147–186

[18] D. Slepian, “First Passage Time for a Particular Gaussian Process”, Ann. Math. Statist., 32:2 (1961), 610–612