Markov processes and group actions
Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 29-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop basic properties of a Markov process that is invariant under the action of a locally compact topological group.
Keywords: Markov processes, topological groups.
@article{THSP_2016_21_2_a4,
     author = {M. Liao},
     title = {Markov processes and group actions},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {29--57},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a4/}
}
TY  - JOUR
AU  - M. Liao
TI  - Markov processes and group actions
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 29
EP  - 57
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a4/
LA  - en
ID  - THSP_2016_21_2_a4
ER  - 
%0 Journal Article
%A M. Liao
%T Markov processes and group actions
%J Teoriâ slučajnyh processov
%D 2016
%P 29-57
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a4/
%G en
%F THSP_2016_21_2_a4
M. Liao. Markov processes and group actions. Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 29-57. http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a4/

[1] D. Applebaum, Lévy processes and stochastic calculus, second, Cambridge Univ. Press, 2009

[2] D. Applebaum, Probability on compact Lie groups, Springer, 2014

[3] M. Babullot, “Comportement asymptotique due mouvement Brownien sur une variété homogène à courbure négative ou nulle”, Ann. Inst. H. Poincaré (prob et Stat), 27 (1991), 61–90

[4] J. Bertoin, Levy processes, Cambrige Univ. Press, 1996

[5] G. E. Bredon, Topology and geometry, Springer, 1997

[6] E. Born, “An explicit”, J. Theor. Prob., 2 (1989), 325–342

[7] S. G. Dani, M. McCrudden, “Embeddability of infinitely divisible distributions on linear Lie groups”, Invent. Math., 110 (1992), 237–261

[8] S. G. Dani, M. McCrudden, “Convolution roots and embedding of probability measures on Lie groups”, Adv. Math., 209 (2007), 198–211

[9] E. B. Dynkin, “Nonnegative eigenfunctions of the Laplace-Betrami operators and Brownian motion in certain symmetric spaces”, Dokl. Akad. Nauk SSSR, 141 (1961), 1433–1426

[10] S. N. Ethier, T. G. Kurtz, Markov processes, characterization and convergence, John Wiley, 1986

[11] P. Feinsilver, “Processes with independent increments on a Lie group”, Trans. Amer. Math. Soc., 242 (1978), 73–121

[12] H. Furstenberg, H. Kesten, “Products of random matrices”, Ann. Math. Statist., 31 (1960), 457–469

[13] H. Furstenberg, “Noncommuting random products”, Trans. Am. Math. Soc., 108 (1963), 377–428

[14] R. Gangolli, “Isotropic infinitely divisible measures on symmetric spaces”, Acta Math., 111 (1964), 213–246

[15] Y. Guivarc'h, A. Raugi, “Frontière de Furstenberg, propriétés de contraction et convergence”, Z. Wahr. Gebiete, 68 (1985), 187–242

[16] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, 1978

[17] S. Helgason, Groups and geometric analysis, Academic Press, 1984

[18] H. Heyer, Probability measures on locally compact groups, Springer-Verlag, 1977

[19] H. Heyer, G. Pap, “Martingale characterizations of increment processes in a local compact group”, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 6 (2003), 563–595

[20] G. A. Hunt, “Semigroups of measures on Lie groups”, Trans. Am. Math. Soc., 81 (1956), 264–293

[21] O. Kallenberg, Foundations of modern probability, second ed., Springer-Verlag, 2002

[22] T. Karube, “On the local cross sections in locally compact groups”, J. Math. Soc. Japan, 10 (1958), 343–347

[23] S. Kobayashi, K. Nomizu, Foundations of differential geometry, v. I and II, Interscience Publishers, 1963 and 1969

[24] M. Liao, “Lévy processes in semi-simple Lie groups and stability of stochastic flows”, Trans. Am. Math. Soc., 350 (1998), 501–522

[25] M. Liao, Lévy processes in Lie groups, Cambridge Univ. Press, 2004

[26] M. Liao, “A decomposition of Markov processes via group actions”, J. Theoret. Probab., 22 (2009), 164–185

[27] M. Liao, “Inhomogeneous Lévy Processes in Lie Groups and Homogeneous Spaces”, J. Theoret. Probab., 27 (2014), 315–357

[28] M. Liao, “Convolution of probability measures on Lie groups and homogeneous spaces”, Potential Analysis, 43 (2015), 707–715

[29] M. P. Malliavin, P. Malliavin, “Factorizations et lois limites de la diffusion horizontale audessus d'un espace Riemannien symmetrique”, Lecture Notes Math., 404 (1974), 164–271

[30] K. Nagami, “Cross sections in locally compact groups”, J. Math. Soc. Japan, 15 (1963), 301–303

[31] G. Pap, “General solution of the functional central limit problems on a Lie group”, Infin. Dim. Anal. Quantum Probab. Rel. Top., 7 (2004), 43–87

[32] J. R. Norris, L. C. G. Rogers, D. Williams, “Brownian motion of ellipsoids”, Trans. Am. Math. Soc., 294 (1986), 757–765

[33] A. Orihara, “On random ellipsoids”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 17 (1970), 73–85

[34] A. Raugi, “Fonctions harmoniques et théorèmes limites pour les marches gléatoires sur les groupes”, Bull. Soc. Math. France, mémoire, 54 (1997)

[35] K. Sato, Lévy processes and infinitely devisible distributions, translated from 1990 Japanese original and revised by the author, Cambridge Studies Adv. Math., 68, Cambridge Univ. Press, 1999

[36] E. Siebert, “Fourier analysis and limit theorems for convolution semigroups on a locally compact groups”, Adv. Math., 39 (1981), 111–154

[37] D. W. Stroock, S. R. S. Varadhan, “Limit theorems for random walks on Lie groups”, Sankhy$\bar{a}$: Indian J. of Stat. Ser. A, 35 (1973), 277–294

[38] J. C. Taylor, “The Iwasawa decomposition and the limiting behavior of Brownian motion on a symmetric space of non-compact type”, Geometry of random motion, Contemp. Math., 73, eds. R. Durrett, M. A. Pinsky, Am. Math. Soc., 1988, 303–332

[39] J. C. Taylor, “Brownian motion on a symmetric space of non-compact type: asymptotic behavior in polar coordinates”, Can. J. Math., 43 (1991), 1065–1085

[40] V. N. Tutubalin, “Limit theorems for a product of random matrices”, Theory Probab. Appl., 10 (1965), 25–27

[41] Valery V. Volchkov, Vitaly V. Volchkov, Harmonic Analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer-Verlag, 2009

[42] A. D. Virtser, “Central limit theorem for semi-simple Lie groups”, Theory Probab. Appl., 15 (1970), 667–687