Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2016_21_2_a3, author = {Alexander V. Kolesnikov and Nikolay Lysenko}, title = {Remarks on mass transportation minimizing expectation of a minimum of affine functions}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {22--28}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a3/} }
TY - JOUR AU - Alexander V. Kolesnikov AU - Nikolay Lysenko TI - Remarks on mass transportation minimizing expectation of a minimum of affine functions JO - Teoriâ slučajnyh processov PY - 2016 SP - 22 EP - 28 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a3/ LA - en ID - THSP_2016_21_2_a3 ER -
%0 Journal Article %A Alexander V. Kolesnikov %A Nikolay Lysenko %T Remarks on mass transportation minimizing expectation of a minimum of affine functions %J Teoriâ slučajnyh processov %D 2016 %P 22-28 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a3/ %G en %F THSP_2016_21_2_a3
Alexander V. Kolesnikov; Nikolay Lysenko. Remarks on mass transportation minimizing expectation of a minimum of affine functions. Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 22-28. http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a3/
[1] Russian Math. Surveys, 67:5, 785–890
[2] V. I. Bogachev, Measure theory, v. 1,2, Springer, Berlin, 2007
[3] J. Delon, J. Salomon, A. Sobolevskii, “Local matching indicators for transport problems with concave costs”, SIAM J. Disc. Math., 26:2 (2012), 801–827
[4] W. Gangbo, R. J. McCann, “The geometry of optimal transportation”, Acta Math., 177 (1996), 113–161
[5] R. J. McCann, “Exact solutions to the transportation problem on the line”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 1341–1380
[6] B. Pass, “Multi-marginal optimal transport: theory and applications”, ESAIM: Math. Model. Numer. Anal., 49 (2015), 1771–1790
[7] P. Pegon, D. Piazzoli, F. Santambrogio, “Full characterization of optimal transport plans for concave costs”, Disc. Cont. Dyn. Syst. A, 35:12 (2015), 6113–6132
[8] C. Villani, Topics in optimal transportation, Amer. Math. Soc., Rhode Island, 2003