Remarks on mass transportation minimizing expectation of a minimum of affine functions
Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 22-28

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Monge–Kantorovich problem with one-dimensional marginals $\mu$ and $\nu$ and the cost function $c = \min\{l_1, \ldots, l_n\}$ that equals the minimum of a finite number $n$ of affine functions $l_i$ satisfying certain non-degeneracy assumptions. We prove that the problem is equivalent to a finite-dimensional extremal problem. More precisely, it is shown that the solution is concentrated on the union of $n$ products $I_i \times J_i$, where $\{I_i\}$ and $\{J_i\}$ are partitions of the real line into unions of disjoint connected sets. The families of sets $\{I_i\}$ and $\{J_i\}$ have the following properties: 1) $c=l_i$ on $I_i \times J_i$, 2) $\{I_i\}, \{J_i\}$ is a couple of partitions solving an auxiliary $n$-dimensional extremal problem. The result is partially generalized to the case of more than two marginals.
Keywords: Monge–Kantorovich problem, concave cost functions.
@article{THSP_2016_21_2_a3,
     author = {Alexander V. Kolesnikov and Nikolay Lysenko},
     title = {Remarks on mass transportation minimizing expectation of a minimum of affine functions},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {22--28},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a3/}
}
TY  - JOUR
AU  - Alexander V. Kolesnikov
AU  - Nikolay Lysenko
TI  - Remarks on mass transportation minimizing expectation of a minimum of affine functions
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 22
EP  - 28
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a3/
LA  - en
ID  - THSP_2016_21_2_a3
ER  - 
%0 Journal Article
%A Alexander V. Kolesnikov
%A Nikolay Lysenko
%T Remarks on mass transportation minimizing expectation of a minimum of affine functions
%J Teoriâ slučajnyh processov
%D 2016
%P 22-28
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a3/
%G en
%F THSP_2016_21_2_a3
Alexander V. Kolesnikov; Nikolay Lysenko. Remarks on mass transportation minimizing expectation of a minimum of affine functions. Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 22-28. http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a3/