Renewal shot noise processes in the case of slowly varying tails
Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 14-21

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate weak convergence of renewal shot noise processes in the case of slowly varying tails of the inter-shot times. We show that these processes, after an appropriate non-linear scaling, converge in the sense of finite-dimensional distributions to an inverse extremal process.
Keywords: Extremal process, random process with immigration, renewal theory, shot noise process.
@article{THSP_2016_21_2_a2,
     author = {Zakhar Kabluchko and Alexander Marynych},
     title = {Renewal shot noise processes in the case of slowly varying tails},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {14--21},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a2/}
}
TY  - JOUR
AU  - Zakhar Kabluchko
AU  - Alexander Marynych
TI  - Renewal shot noise processes in the case of slowly varying tails
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 14
EP  - 21
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a2/
LA  - en
ID  - THSP_2016_21_2_a2
ER  - 
%0 Journal Article
%A Zakhar Kabluchko
%A Alexander Marynych
%T Renewal shot noise processes in the case of slowly varying tails
%J Teoriâ slučajnyh processov
%D 2016
%P 14-21
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a2/
%G en
%F THSP_2016_21_2_a2
Zakhar Kabluchko; Alexander Marynych. Renewal shot noise processes in the case of slowly varying tails. Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 14-21. http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a2/