Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2016_21_2_a2, author = {Zakhar Kabluchko and Alexander Marynych}, title = {Renewal shot noise processes in the case of slowly varying tails}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {14--21}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a2/} }
TY - JOUR AU - Zakhar Kabluchko AU - Alexander Marynych TI - Renewal shot noise processes in the case of slowly varying tails JO - Teoriâ slučajnyh processov PY - 2016 SP - 14 EP - 21 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a2/ LA - en ID - THSP_2016_21_2_a2 ER -
Zakhar Kabluchko; Alexander Marynych. Renewal shot noise processes in the case of slowly varying tails. Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 14-21. http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a2/
[1] P. Billingsley, Convergence of probability measures, 2nd ed., Wiley, Chichester, 1999
[2] N. H. Bingham, “Limit theorems for occupation times of Markov processes”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 17 (1971), 1–22
[3] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular variation, Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge, 1987
[4] D. A. Darling, “The influence of the maximum term in the addition of independent random variables”, Trans. Amer. Math. Soc., 73 (1952), 95–107
[5] A. Dvoretzky, P. Erdős, “Some problems on random walk in space”, Proc. Berkeley Sympos. math. Statist. Probability, California, 1951, 353–367
[6] M. Dwass, “Extremal processes”, Ann. Math. Statist, 35 (1964), 1718–1725
[7] A. Iksanov, “Functional limit theorems for renewal shot noise processes with increasing response functions”, Stoch. Process. Appl., 123:6 (2013), 1987–2010
[8] A. Iksanov, Renewal theory for perturbed random walks and similar processes, Birkhäuser, 2016
[9] A. Iksanov, Z. Kabluchko, A. Marynych, “Weak convergence of renewal shot noise processes in the case of slowly varying normalization”, Stat. Probab. Lett., 114 (2016), 67–77
[10] A. Iksanov, A. Marynych, M. Meiners, “Limit theorems for renewal shot noise processes with eventually decreasing response functions”, Stoch. Process. Appl., 124:6 (2014), 2132–2170
[11] A. Iksanov, A. Marynych, M. Meiners, “Asymptotics of random processes with immigration I: scaling limits”, Bernoulli, 23:2 (2017), 1233–1278
[12] A. Iksanov, A. Marynych, M. Meiners, “Asymptotics of random processes with immigration {II}: convergence to stationarity”, Bernoulli, 23:2 (2017), 1279–1298
[13] A. Iksanov, M. Möhle, “On the number of jumps of random walks with a barrier”, Adv. Appl. Probab., 40:1 (2008), 206–228
[14] Y. Kasahara, “Extremal process as a substitution for "one-sided stable process with index $0$"”, Stochastic processes and their applications, Proc. Int. Conf., Lect. Notes Math., 1203, Nagoya, Japan, 1985, 90–100
[15] Y. Kasahara, “A limit theorem for sums of i.i.d. random variables with slowly varying tail probability”, J. Math. Kyoto Univ., 26:3 (1986), 437–443
[16] C. Klüppelberg, T. Mikosch, “Explosive Poisson shot noise processes with applications to risk reserves”, Bernoulli, 1:1-2 (1995), 125–147
[17] C. Klüppelberg, T. Mikosch, A. Schärf, “Regular variation in the mean and stable limits for Poisson shot noise”, Bernoulli, 9:3 (2003), 467–496
[18] J. Lane, “The central limit theorem for the Poisson shot-noise process”, J. Appl. Probab., 21:2 (1984), 287–301
[19] M. M. Meerschaert, H.-P. Scheffler, “Limit theorems for continuous time random walks with slowly varying waiting times”, Stat. Probab. Lett., 71:1 (2005), 15–22
[20] P. Nándori, Z. Shen, Logarithmic scaling of planar random walk's local times, 2016, arXiv: 1603.07587
[21] S. I. Resnick, “Inverses of extremal processes”, Adv. Appl. Probab., 6 (1974), 392–406
[22] S. I. Resnick, Extreme values, regular variation and point processes, Series in Operations Research and Financial Engineering, Springer, New York, 2008, Reprint of the 1987 original., Springer
[23] E. Seneta, Regularly varying functions, Lecture Notes in Mathematics, 508, Springer-Verlag, Berlin-New York, 1976
[24] H. Teicher, “Rapidly growing random walks and an associated stopping time”, Ann. Probab., 7:6 (1979), 1078–1081
[25] W. Whitt, “Weak convergence of first passage time processes”, J. Appl. Probab., 8 (1971), 417–422
[26] W. Whitt, Stochastic-process limits: An introduction to stochastic-process limits and their application to queues, Springer Series in Operations Research, Springer-Verlag, New York, 2002
[27] M. Yamazato, “On a $J_1$-convergence theorem for stochastic processes on $D[0,\infty)$ having monotone sample paths and its applications (The 8th workshop on stochastic numerics)”, RIMS Kôkyûroku, 1620 (2009), 109–118