A note on weak convergence of the $n$-point motions of Harris flows
Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 4-13

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we extend the main results of [2] and [8], which concern the weak convergence of the $n$-point motions of smooth Harris flows to those of the Arratia flow, to the case when the covariance functions of these Harris flows converge pointwise to a covariance function whose support is of zero Lebesgue measure.
Keywords: Harris flows, Brownian stochastic flows, weak convergence.
Mots-clés : $n$-point motions
@article{THSP_2016_21_2_a1,
     author = {V. V. Fomichov},
     title = {A note on weak convergence of the $n$-point motions of {Harris} flows},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {4--13},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a1/}
}
TY  - JOUR
AU  - V. V. Fomichov
TI  - A note on weak convergence of the $n$-point motions of Harris flows
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 4
EP  - 13
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a1/
LA  - en
ID  - THSP_2016_21_2_a1
ER  - 
%0 Journal Article
%A V. V. Fomichov
%T A note on weak convergence of the $n$-point motions of Harris flows
%J Teoriâ slučajnyh processov
%D 2016
%P 4-13
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a1/
%G en
%F THSP_2016_21_2_a1
V. V. Fomichov. A note on weak convergence of the $n$-point motions of Harris flows. Teoriâ slučajnyh processov, Tome 21 (2016) no. 2, pp. 4-13. http://geodesic.mathdoc.fr/item/THSP_2016_21_2_a1/