On strong solutions to countable systems of SDEs with interaction and non-Lipschitz drift
Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 91-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

A countable system of stochastic differential equations is considered. A theorem on existence and uniqueness of a strong solution is proved if drift and diffusion coefficients satisfy finite interaction radius condition.
Keywords: Stochastic differential equation; strong solution; pathwise uniqueness; interacting particle system.
@article{THSP_2016_21_1_a9,
     author = {M. V. Tantsiura},
     title = {On strong solutions to countable systems of {SDEs} with interaction and {non-Lipschitz} drift},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {91--101},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a9/}
}
TY  - JOUR
AU  - M. V. Tantsiura
TI  - On strong solutions to countable systems of SDEs with interaction and non-Lipschitz drift
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 91
EP  - 101
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a9/
LA  - en
ID  - THSP_2016_21_1_a9
ER  - 
%0 Journal Article
%A M. V. Tantsiura
%T On strong solutions to countable systems of SDEs with interaction and non-Lipschitz drift
%J Teoriâ slučajnyh processov
%D 2016
%P 91-101
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a9/
%G en
%F THSP_2016_21_1_a9
M. V. Tantsiura. On strong solutions to countable systems of SDEs with interaction and non-Lipschitz drift. Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 91-101. http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a9/

[1] G. Da Prato, F. Flandoli, E. Priola, M. Rockner, “Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift”, Ann. Probab., 41:5 (2013), 3306–3344 | DOI | MR | Zbl

[2] D. Dawson, Measure-valued markov processes, Ecole d'Ete de Probabilites de Saint-Flour XXI, 1991 | MR

[3] S. N. Ethier, T. G. Kurtz, Markov processes: characterization and convergence, Wiley series in probability and mathematical statistics, 2005 | MR

[4] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Second Edition, North-Holland, Kodansha, 1989 | MR | Zbl

[5] V. V. Konarovs'kyi, “System of sticking diffusion particles of variable mass”, Ukrainian Math. J., 62:1 (2010), 97–113 | DOI | MR

[6] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge university press, 1997 | MR | Zbl

[7] A. Yu. Pilipenko, M. V. Tantsiura, “On the strong existence and uniqueness to a solution of a countable system of SDEs with measurable drift”, Theory of Stochastic Processes, 19 (35):2 (2014), 52–63 | MR | Zbl

[8] Ya. G. Sinai, “Construction of dynamics in one-dimensional systems of statistical mechanics”, Theor. Math. Phys., 11:2 (1972), 487–494 | DOI | MR

[9] A. V. Skorokhod, Studies in the theory of random processes, Addison-Wesley, Reading, Massachusetts, 1965 | MR | Zbl

[10] A. Yu. Veretennikov, “On strong solutions and explicit formulas for solutions of stochastic integral equations”, Mat. Sb., 111(153):3 (1980), 434–452 | MR | Zbl

[11] A. K. Zvonkin, “A transformation of the phase space of a diffusion process that will remove the drift (Russian)”, Mat. Sb. (N.S.), 93:135 (1974), 129–149 | DOI | MR | Zbl