On strong solutions to countable systems of SDEs with interaction and non-Lipschitz drift
Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 91-101

Voir la notice de l'article provenant de la source Math-Net.Ru

A countable system of stochastic differential equations is considered. A theorem on existence and uniqueness of a strong solution is proved if drift and diffusion coefficients satisfy finite interaction radius condition.
Keywords: Stochastic differential equation; strong solution; pathwise uniqueness; interacting particle system.
@article{THSP_2016_21_1_a9,
     author = {M. V. Tantsiura},
     title = {On strong solutions to countable systems of {SDEs} with interaction and {non-Lipschitz} drift},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {91--101},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a9/}
}
TY  - JOUR
AU  - M. V. Tantsiura
TI  - On strong solutions to countable systems of SDEs with interaction and non-Lipschitz drift
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 91
EP  - 101
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a9/
LA  - en
ID  - THSP_2016_21_1_a9
ER  - 
%0 Journal Article
%A M. V. Tantsiura
%T On strong solutions to countable systems of SDEs with interaction and non-Lipschitz drift
%J Teoriâ slučajnyh processov
%D 2016
%P 91-101
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a9/
%G en
%F THSP_2016_21_1_a9
M. V. Tantsiura. On strong solutions to countable systems of SDEs with interaction and non-Lipschitz drift. Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 91-101. http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a9/