On some perturbations of a symmetric stable process and the corresponding Cauchy problems
Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 64-72

Voir la notice de l'article provenant de la source Math-Net.Ru

A semigroup of linear operators on the space of all continuous bounded functions given on a $d$-dimensional Euclidean space $\mathbb{R}^d$ is constructed such that its generator can be written in the following form $ \mathbf{A}+(a(\cdot),\mathbf{B}), $ where $\mathbf{A}$ is the generator of a symmetric stable process in $\mathbb{R}^d$ with the exponent $\alpha\in(1,2]$, $\mathbf{B}$ is the operator that is determined by the equality $\mathbf{A}=c\ \mathbf{div}(\mathbf{B})$ ($c>0$ is a given parameter), and a given $\mathbb{R}^d$-valued function $a\in L_p(\mathbb{R}^d)$ for some $p>d+\alpha$ (the case of $p=+\infty$ is not exclusion). However, there is no Markov process in $\mathbb{R}^d$ corresponding to this semigroup because it does not preserve the property of a function to take on only non-negative values. We construct a solution of the Cauchy problem for the parabolic equation $\frac{\partial u}{\partial t}=(\mathbf{A}+(a(\cdot),\mathbf{B}))u$.
Keywords: Markov process, Wiener process, symmetric stable process, pseudo-differential operator, pseudo-differential equation, transition probability density.
Mots-clés : perturbation
@article{THSP_2016_21_1_a6,
     author = {M. M. Osypchuk},
     title = {On some perturbations of a symmetric stable process and the corresponding {Cauchy} problems},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {64--72},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a6/}
}
TY  - JOUR
AU  - M. M. Osypchuk
TI  - On some perturbations of a symmetric stable process and the corresponding Cauchy problems
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 64
EP  - 72
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a6/
LA  - en
ID  - THSP_2016_21_1_a6
ER  - 
%0 Journal Article
%A M. M. Osypchuk
%T On some perturbations of a symmetric stable process and the corresponding Cauchy problems
%J Teoriâ slučajnyh processov
%D 2016
%P 64-72
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a6/
%G en
%F THSP_2016_21_1_a6
M. M. Osypchuk. On some perturbations of a symmetric stable process and the corresponding Cauchy problems. Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 64-72. http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a6/