On some perturbations of a symmetric stable process and the corresponding Cauchy problems
Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 64-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

A semigroup of linear operators on the space of all continuous bounded functions given on a $d$-dimensional Euclidean space $\mathbb{R}^d$ is constructed such that its generator can be written in the following form $ \mathbf{A}+(a(\cdot),\mathbf{B}), $ where $\mathbf{A}$ is the generator of a symmetric stable process in $\mathbb{R}^d$ with the exponent $\alpha\in(1,2]$, $\mathbf{B}$ is the operator that is determined by the equality $\mathbf{A}=c\ \mathbf{div}(\mathbf{B})$ ($c>0$ is a given parameter), and a given $\mathbb{R}^d$-valued function $a\in L_p(\mathbb{R}^d)$ for some $p>d+\alpha$ (the case of $p=+\infty$ is not exclusion). However, there is no Markov process in $\mathbb{R}^d$ corresponding to this semigroup because it does not preserve the property of a function to take on only non-negative values. We construct a solution of the Cauchy problem for the parabolic equation $\frac{\partial u}{\partial t}=(\mathbf{A}+(a(\cdot),\mathbf{B}))u$.
Keywords: Markov process, Wiener process, symmetric stable process, pseudo-differential operator, pseudo-differential equation, transition probability density.
Mots-clés : perturbation
@article{THSP_2016_21_1_a6,
     author = {M. M. Osypchuk},
     title = {On some perturbations of a symmetric stable process and the corresponding {Cauchy} problems},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {64--72},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a6/}
}
TY  - JOUR
AU  - M. M. Osypchuk
TI  - On some perturbations of a symmetric stable process and the corresponding Cauchy problems
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 64
EP  - 72
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a6/
LA  - en
ID  - THSP_2016_21_1_a6
ER  - 
%0 Journal Article
%A M. M. Osypchuk
%T On some perturbations of a symmetric stable process and the corresponding Cauchy problems
%J Teoriâ slučajnyh processov
%D 2016
%P 64-72
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a6/
%G en
%F THSP_2016_21_1_a6
M. M. Osypchuk. On some perturbations of a symmetric stable process and the corresponding Cauchy problems. Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 64-72. http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a6/

[1] G. S. Bigun, M. M. Osypchuk, “The explicit form of the fundamental solution of one pseudo-differential equation with constant coefficients”, Precarpathian bulletin of the Shevchenko scientific society, 1:29 (2015), 123–131

[2] K. Bogdan, T. Jakubowski, “Estimates of heat kernel of fractional Laplacian perturbed by gradient operators”, Commun. Math. Phys., 271 (2007), 179–198 | DOI | MR | Zbl

[3] A. N. Kochubei, “Parabolic pseudodifferential equations, hypersingular integrals, and Markov processes”, Math. USSR, Izvestiya, 52:5 (1988), 909–934 | MR

[4] V. P. Kurenok, “A note on $L_2$-estimates for stable integrals with drift”, Transactions of the American Mathematical Society, 300:2 (2008), 925–938 | DOI | MR

[5] V. Liskevich, Qi S. Zhang, “Extra regularity for parabolic equations with drift terms”, Manuscripta Mathematica, 113:2 (2004), 191–209 | DOI | MR | Zbl

[6] J. V. Loebus, M. I. Portenko, “On one class of perturbations of the generators of a stable process”, Theory of Probability and Mathematical Statistics, 52 (1995), 102–111 | Zbl

[7] M. M. Osypchuk, “On some perturbations of a stable process and solutions to the Cauchy problem for a class of pseudo-differential equations”, Carpathian Math. Publ., 7:1 (2015), 105–111 | DOI | MR

[8] M. M. Osypchuk, M. I. Portenko, “One type of singular perturbations of a multidimensional stable process”, Theory of Stochastic Processes, 19(35):2 (2014), 42–51 | MR | Zbl

[9] M. M. Osypchuk, M. I. Portenko, “On single-layer potentials for a class of pseudo-differential equations”, Ukrainskyi matematychnyi zhurnal, 67:11 (2015), 1556–1568 | MR

[10] N. I. Portenko, “Some perturbations of drift-type for symmetric stable processes”, Random Oper. and Stoch. Equ., 2:3 (1994), 211–224 | DOI | MR | Zbl

[11] S. I. Podolynny, N. I. Portenko, “On multidimensional stable processes with locally unbounded drift”, Random Oper. and Stoch. Equ., 3:2 (1995), 113–124 | DOI | MR | Zbl