Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2016_21_1_a6, author = {M. M. Osypchuk}, title = {On some perturbations of a symmetric stable process and the corresponding {Cauchy} problems}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {64--72}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a6/} }
TY - JOUR AU - M. M. Osypchuk TI - On some perturbations of a symmetric stable process and the corresponding Cauchy problems JO - Teoriâ slučajnyh processov PY - 2016 SP - 64 EP - 72 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a6/ LA - en ID - THSP_2016_21_1_a6 ER -
M. M. Osypchuk. On some perturbations of a symmetric stable process and the corresponding Cauchy problems. Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 64-72. http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a6/
[1] G. S. Bigun, M. M. Osypchuk, “The explicit form of the fundamental solution of one pseudo-differential equation with constant coefficients”, Precarpathian bulletin of the Shevchenko scientific society, 1:29 (2015), 123–131
[2] K. Bogdan, T. Jakubowski, “Estimates of heat kernel of fractional Laplacian perturbed by gradient operators”, Commun. Math. Phys., 271 (2007), 179–198 | DOI | MR | Zbl
[3] A. N. Kochubei, “Parabolic pseudodifferential equations, hypersingular integrals, and Markov processes”, Math. USSR, Izvestiya, 52:5 (1988), 909–934 | MR
[4] V. P. Kurenok, “A note on $L_2$-estimates for stable integrals with drift”, Transactions of the American Mathematical Society, 300:2 (2008), 925–938 | DOI | MR
[5] V. Liskevich, Qi S. Zhang, “Extra regularity for parabolic equations with drift terms”, Manuscripta Mathematica, 113:2 (2004), 191–209 | DOI | MR | Zbl
[6] J. V. Loebus, M. I. Portenko, “On one class of perturbations of the generators of a stable process”, Theory of Probability and Mathematical Statistics, 52 (1995), 102–111 | Zbl
[7] M. M. Osypchuk, “On some perturbations of a stable process and solutions to the Cauchy problem for a class of pseudo-differential equations”, Carpathian Math. Publ., 7:1 (2015), 105–111 | DOI | MR
[8] M. M. Osypchuk, M. I. Portenko, “One type of singular perturbations of a multidimensional stable process”, Theory of Stochastic Processes, 19(35):2 (2014), 42–51 | MR | Zbl
[9] M. M. Osypchuk, M. I. Portenko, “On single-layer potentials for a class of pseudo-differential equations”, Ukrainskyi matematychnyi zhurnal, 67:11 (2015), 1556–1568 | MR
[10] N. I. Portenko, “Some perturbations of drift-type for symmetric stable processes”, Random Oper. and Stoch. Equ., 2:3 (1994), 211–224 | DOI | MR | Zbl
[11] S. I. Podolynny, N. I. Portenko, “On multidimensional stable processes with locally unbounded drift”, Random Oper. and Stoch. Equ., 3:2 (1995), 113–124 | DOI | MR | Zbl