Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2016_21_1_a5, author = {G. M. Molyboga}, title = {An analogue of the {Berry-Esseen} theorem for functionals of weakly ergodic {Markov} processes}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {53--63}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a5/} }
TY - JOUR AU - G. M. Molyboga TI - An analogue of the Berry-Esseen theorem for functionals of weakly ergodic Markov processes JO - Teoriâ slučajnyh processov PY - 2016 SP - 53 EP - 63 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a5/ LA - en ID - THSP_2016_21_1_a5 ER -
G. M. Molyboga. An analogue of the Berry-Esseen theorem for functionals of weakly ergodic Markov processes. Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 53-63. http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a5/
[1] A. M. Kulik, A. Yu. Veretennikov, “Diffusion approximation of systems with weakly ergodic Markov perturbations I”, Theor. Probability and Math. Statist., 87 (2013), 13–29 | MR | Zbl
[2] A. M. Kulik, A. Yu. Veretennikov, “Diffusion approximation of systems with weakly ergodic Markov perturbations II”, Theor. Probability and Math. Statist., 88 (2014), 1–17 | DOI | MR | Zbl
[3] Y. Mishura, K. Ralchenko, “On Drift Parameter Estimation in Models with Fractional Brownian Motion by Discrete Observations”, Austrian Journal of Statistics, 43:3 (2014), 217–228 | DOI
[4] P. Billingsley, Statistical inference for Markov processes, The University of Chicago Press, Chicago, 1961 | MR | Zbl
[5] Y. Hu, D. Nualart, W. Xiao, W. Zhang, “Exact maximum likelihood estimator for drift fractional Brownian motion at discrete observation”, Acta Mathematica Scientia, 31:5 (2011), 1851–1859 | DOI | MR | Zbl
[6] L. Hervé, J. Ledoux, V. Patilea, “A uniform Berry-Esseen theorem on M-estimators for geometrically ergodic Markov chains”, Bernoulli, 18:2 (2012), 703–734 | DOI | MR | Zbl
[7] A. N. Tihomirov, “Convergence rate in the central limit theorem for weakly dependent random variables”, Theory of Probability and its Applications, 25:4 (1980), 790–809 | DOI | MR
[8] I. Nourdin, G. Peccati, “Stein's method and exact Berry-Esseen asymptotics for functionals of Gaussian fields”, The Annals of Probability, 37:6 (2009), 2231–2261 | DOI | MR | Zbl
[9] D. Ferré, L. Hervé, J. Ledoux, “Limit theorems for stationary Markov processes with $L^2$-spectral gap”, Annales de l`Institut Henri Poincaré Probabilités et Statistiques, 48:2 (2012), 396–423 | DOI | MR | Zbl
[10] M. Hairer, J. C. Mattingly, M. Scheutzow, “Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations”, Probability Theory and Related Fields, 149:1-2 (2011), 223–259 | DOI | MR | Zbl
[11] A. M. Kulik, Introduction to Ergodic rates for Markov chains and processes, Potsdam University Press, Potsdam, 2015
[12] J. Jacod, A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer, 2003 | MR | Zbl
[13] T. Komorowski, A. Walczuk, “Central limit theorem for Markov processes with spectral gap in the Wasserstein metric”, Stochastic Processes and their Applications, 122:5 (2012), 2155–2184 | DOI | MR | Zbl
[14] R. Sh. Liptser, A. N. Shiryaev, “On the Rate of Convergence in the Central Limit Theorem for Semimartingales”, Theory of Probability and its Applications, 27:1 (1982), 1–13 | DOI | MR | Zbl
[15] G. C. Papanicolaou, D. W. Stroock, S. R. S. Varadhan, Martingale approach to some limit theorems, Duke Univ. Series, 1977 | MR | Zbl
[16] W. Feller, An Introduction to Probability Theory and Its Applications, v. 2, Wiley, New York, 1971 | MR | Zbl