Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2016_21_1_a4, author = {S. M. Krasnitskiy and O. O. Kurchenko}, title = {Baxter type theorems for generalized random {Gaussian} processes}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {45--52}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a4/} }
S. M. Krasnitskiy; O. O. Kurchenko. Baxter type theorems for generalized random Gaussian processes. Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 45-52. http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a4/
[1] P. Levy, “Le mouvement Brownian plan”, Amer J. Math., 62 (1940), 487–550 | DOI | MR
[2] G. Baxter, “A strong limit theorem for Gaussian processes”, Proc. Amer. Math. Soc., 7:3 (1956), 522–527 | DOI | MR | Zbl
[3] E. G. Gladyshev, “A new limit theorem for stochastic processes with Gaussian increments”, Teor. Verojatnost. i Primenen., 6:1 (1961), 57–66 | MR
[4] S. M. Berman, “A version of the Levy-Baxter theorem for the increments of Brownian motion of several parameters”, Proc. Amer. Math. Soc., 18 (1967), 1051–1055 | MR | Zbl
[5] S. M. Krasnitsky, “On some limit theorems for random fields with Gaussian m–order increments”, Teor. Verojatnost. i Mat. Staitist., 5 (1971), 71–80
[6] T. V. Arak, “On Levy-Baxter type theorems for random fields”, Teor. Verojatnost. i Primenen., 17:1 (1972), 153–160 | MR | Zbl
[7] O. O. Kurchenko, “A strongly consistent estimate for the Hurst parameter of fractional Brownian motion”, Teor. Imovir. Mat. Stat., 67 (2002), 45–54 | MR
[8] J–C. Breton, I. Nourdin, G. Peccati, “Exact confidence intervals for the Hurst parameter of a fractional Brownian motion”, Electronic J. Statist., 3 (2009), 416–425 | DOI | MR | Zbl
[9] Yu. V. Kozachenko, O. O. Kurchenko, “An estimate for the multiparameter FBM”, Theory Stoch. Process., 5:21 (1999), 113–119 | MR | Zbl
[10] B. L. S. Prakasa Rao, Statistical Inference for Fractional Diffusion Processes, John Wiley Sons, Chichester, 2010 | MR | Zbl
[11] Yu. A. Rozanov, Random fields and stochastic partial differential equations, Nauka, Moscow, 1995 | MR | Zbl
[12] V. B. Goryainov, “On Levy–Baxter theorems for stochastic Elliptic Equations”, Teor. Verojatnost. i Primenen., 33:1 (1988), 176–179 | MR
[13] N. M. Arato, “On a Limit Theorem for Generalized Gaussian Random Fields Corresponding to Stochastic Partial Differential Equations”, Teor. Verojatnost. i Primenen., 34:2 (1989), 409–411 | MR
[14] I. M. Gelfand, N. Ya. Vilenkin, Applications of harmonic analysis. Equipped Hilbert spaces, Fizmatgiz, Moscow, 1961
[15] I. A. Ibragimov, Y. A. Rozanov, Gaussian random processes, Nauka, Moscow, 1970
[16] J. Lamperti, Stochastic Processes. A Survey of the Mathematical Theory, Vischa shkola, Kyiv, 1983 | MR | Zbl
[17] S. M. Krasnitskiy, “Some comparative aspects for probability measures corresponding to usual and generalized homogeneous random Gaussian fields equivalence conditions”, Kibernet. Sistem. Anal., 5 (2000), 68–77