Baxter type theorems for generalized random Gaussian processes
Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 45-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some type of Baxter sums for generalized random processes are constructed in this work. Sufficient conditions for such a sum to converge to a non–random constant are obtained. We apply our result to a process of white noise and a derivative of fractional Brownian motion.
Keywords: Levy–Baxter theorems, generalized Gaussian random process.
@article{THSP_2016_21_1_a4,
     author = {S. M. Krasnitskiy and O. O. Kurchenko},
     title = {Baxter type theorems for generalized random {Gaussian} processes},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {45--52},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a4/}
}
TY  - JOUR
AU  - S. M. Krasnitskiy
AU  - O. O. Kurchenko
TI  - Baxter type theorems for generalized random Gaussian processes
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 45
EP  - 52
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a4/
LA  - en
ID  - THSP_2016_21_1_a4
ER  - 
%0 Journal Article
%A S. M. Krasnitskiy
%A O. O. Kurchenko
%T Baxter type theorems for generalized random Gaussian processes
%J Teoriâ slučajnyh processov
%D 2016
%P 45-52
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a4/
%G en
%F THSP_2016_21_1_a4
S. M. Krasnitskiy; O. O. Kurchenko. Baxter type theorems for generalized random Gaussian processes. Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 45-52. http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a4/

[1] P. Levy, “Le mouvement Brownian plan”, Amer J. Math., 62 (1940), 487–550 | DOI | MR

[2] G. Baxter, “A strong limit theorem for Gaussian processes”, Proc. Amer. Math. Soc., 7:3 (1956), 522–527 | DOI | MR | Zbl

[3] E. G. Gladyshev, “A new limit theorem for stochastic processes with Gaussian increments”, Teor. Verojatnost. i Primenen., 6:1 (1961), 57–66 | MR

[4] S. M. Berman, “A version of the Levy-Baxter theorem for the increments of Brownian motion of several parameters”, Proc. Amer. Math. Soc., 18 (1967), 1051–1055 | MR | Zbl

[5] S. M. Krasnitsky, “On some limit theorems for random fields with Gaussian m–order increments”, Teor. Verojatnost. i Mat. Staitist., 5 (1971), 71–80

[6] T. V. Arak, “On Levy-Baxter type theorems for random fields”, Teor. Verojatnost. i Primenen., 17:1 (1972), 153–160 | MR | Zbl

[7] O. O. Kurchenko, “A strongly consistent estimate for the Hurst parameter of fractional Brownian motion”, Teor. Imovir. Mat. Stat., 67 (2002), 45–54 | MR

[8] J–C. Breton, I. Nourdin, G. Peccati, “Exact confidence intervals for the Hurst parameter of a fractional Brownian motion”, Electronic J. Statist., 3 (2009), 416–425 | DOI | MR | Zbl

[9] Yu. V. Kozachenko, O. O. Kurchenko, “An estimate for the multiparameter FBM”, Theory Stoch. Process., 5:21 (1999), 113–119 | MR | Zbl

[10] B. L. S. Prakasa Rao, Statistical Inference for Fractional Diffusion Processes, John Wiley Sons, Chichester, 2010 | MR | Zbl

[11] Yu. A. Rozanov, Random fields and stochastic partial differential equations, Nauka, Moscow, 1995 | MR | Zbl

[12] V. B. Goryainov, “On Levy–Baxter theorems for stochastic Elliptic Equations”, Teor. Verojatnost. i Primenen., 33:1 (1988), 176–179 | MR

[13] N. M. Arato, “On a Limit Theorem for Generalized Gaussian Random Fields Corresponding to Stochastic Partial Differential Equations”, Teor. Verojatnost. i Primenen., 34:2 (1989), 409–411 | MR

[14] I. M. Gelfand, N. Ya. Vilenkin, Applications of harmonic analysis. Equipped Hilbert spaces, Fizmatgiz, Moscow, 1961

[15] I. A. Ibragimov, Y. A. Rozanov, Gaussian random processes, Nauka, Moscow, 1970

[16] J. Lamperti, Stochastic Processes. A Survey of the Mathematical Theory, Vischa shkola, Kyiv, 1983 | MR | Zbl

[17] S. M. Krasnitskiy, “Some comparative aspects for probability measures corresponding to usual and generalized homogeneous random Gaussian fields equivalence conditions”, Kibernet. Sistem. Anal., 5 (2000), 68–77