On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes
Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 1-11

Voir la notice de l'article provenant de la source Math-Net.Ru

We study conditions on metrics on spaces of measurable functions under which weak convergence of Borel probability measures on these spaces follows from weak convergence of finite-dimensional projections of the considered measures.
Keywords: Convergence in measure, weak convergence, finite-dimensional distributions.
@article{THSP_2016_21_1_a0,
     author = {V. I. Bogachev and A. F. Miftakhov},
     title = {On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a0/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - A. F. Miftakhov
TI  - On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 1
EP  - 11
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a0/
LA  - en
ID  - THSP_2016_21_1_a0
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A A. F. Miftakhov
%T On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes
%J Teoriâ slučajnyh processov
%D 2016
%P 1-11
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a0/
%G en
%F THSP_2016_21_1_a0
V. I. Bogachev; A. F. Miftakhov. On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes. Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a0/