Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2016_21_1_a0, author = {V. I. Bogachev and A. F. Miftakhov}, title = {On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {1--11}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a0/} }
TY - JOUR AU - V. I. Bogachev AU - A. F. Miftakhov TI - On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes JO - Teoriâ slučajnyh processov PY - 2016 SP - 1 EP - 11 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a0/ LA - en ID - THSP_2016_21_1_a0 ER -
%0 Journal Article %A V. I. Bogachev %A A. F. Miftakhov %T On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes %J Teoriâ slučajnyh processov %D 2016 %P 1-11 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a0/ %G en %F THSP_2016_21_1_a0
V. I. Bogachev; A. F. Miftakhov. On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes. Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a0/
[1] A. N. Baushev, “On the weak convergence of probability measures in Orlicz spaces”, Theory Probab. Appl., 40:3 (1995), 420–429 | DOI | MR
[2] A. N. Baushev, “On the weak convergence of probability measures in a Banach space”, J. Math. Sci., 109:6 (2002), 2037–2046 | DOI | MR
[3] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968 | MR | Zbl
[4] V. I. Bogachev, Measure theory, v. 1, 2, Springer, New York, 2007 | MR | Zbl
[5] Russian Math. Surveys., 67:5, 785–890 | DOI | DOI | MR | Zbl
[6] V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov equations, Amer. Math. Soc., Providence, Rhode Island, 2015 | MR | Zbl
[7] Russian Math. Surveys., 31:2, 1–69 | DOI | MR | Zbl
[8] Theory Probab., 18:4 (1973) | MR | Zbl
[9] H. Cremers, D. Kadelka, “On weak convergence of stochastic processes with Lusin path spaces”, Manuscripta Math., 45 (1984), 115–125 | DOI | MR | Zbl
[10] H. Cremers, D. Kadelka, “On weak convergence of integral functionals of stochastic processes with applications to processes taking paths in $L_p^E$”, Stoch. Processes Appl., 21 (1986), 305–317 | DOI | MR | Zbl
[11] R. M. Dudley, Real analysis and probability, Wadsworth Brooks, Pacific Grove, California, 1989 | MR | Zbl
[12] R. Fortet, E. Mourier, “Convergence de la répartition empirique vers la répartition théorique”, Ann. Sci. l'École Norm. Sup., 70:3 (1953), 267–285 | MR | Zbl
[13] v. 1, Moscow, 1971 | Zbl
[14] L. Š. Grinblat, “A limit theorem for measurable random processes and its applications”, Proc. Amer. Math. Soc., 61 (1976), 371–376 | DOI | MR
[15] L. Š. Grinblat, “Convergence of probability measures on separable Banach spaces”, Proc. Amer. Math. Soc., 67 (1977), 321–323 | DOI | MR
[16] L. Š. Grinblat, “Convergence of measurable random functions”, Proc. Amer. Math. Soc., 74 (1979), 322–325 | DOI | MR
[17] Ukrainian Math. J., 32:1, 19–25 | DOI | MR | Zbl | Zbl
[18] L. V. Kantorovich, G. Sh. Rubinstein, “On a space of completely additive functions”, Vestnik Leningrad. Univ., 13:7 (1958), 52–59 (in Russian) | MR | Zbl
[19] L. Le Cam, “Convergence in distribution of stochastic processes”, Univ. Calif. Publ. Statist., 2 (1957), 207–236 | MR | Zbl
[20] P. A. Meyer, W. A. Zheng, “Tightness criteria for laws of semi-martingales”, Annales l'Inst. H. Poincaré, 20:4 (1984), 353–372 | MR | Zbl
[21] R. P. Pakshirajan, “A note on the weak convergence of probability measures in the $D[0,1]$ space”, Statist. Probab. Lett., 78:6 (2008), 716–719 | DOI | MR | Zbl
[22] D. Pollard, Convergence of stochastic processes, Springer, Berlin – New York, 1984 | MR | Zbl
[23] R. Rebolledo, “Topologie faible et méta-stabilité”, Séminaire de probabilités XXI, Lecture Notes in Math., 1247, 1987, 545–562 | MR
[24] H. Sadi, “Une condition nécessaire et suffisante pour la convergence en pseudo-loi des processus”, Séminaire de probabilités XXII, Lecture Notes in Math., 1321, 1988, 434–437 | DOI | MR | Zbl
[25] H. Tsukahara, “On the convergence of measurable processes and prediction processes”, Illinois J. Math., 51:4 (2007), 1231–1242 | MR | Zbl
[26] A. W. van der Vaart, J. A. Wellner, Weak convergence and empirical processes. With applications to statistics, Springer-Verlag, New York, 1996 | MR | Zbl