On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes
Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 1-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study conditions on metrics on spaces of measurable functions under which weak convergence of Borel probability measures on these spaces follows from weak convergence of finite-dimensional projections of the considered measures.
Keywords: Convergence in measure, weak convergence, finite-dimensional distributions.
@article{THSP_2016_21_1_a0,
     author = {V. I. Bogachev and A. F. Miftakhov},
     title = {On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--11},
     year = {2016},
     volume = {21},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a0/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - A. F. Miftakhov
TI  - On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes
JO  - Teoriâ slučajnyh processov
PY  - 2016
SP  - 1
EP  - 11
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a0/
LA  - en
ID  - THSP_2016_21_1_a0
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A A. F. Miftakhov
%T On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes
%J Teoriâ slučajnyh processov
%D 2016
%P 1-11
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a0/
%G en
%F THSP_2016_21_1_a0
V. I. Bogachev; A. F. Miftakhov. On weak convergence of finite-dimensional and infinite-dimensional distributions of random processes. Teoriâ slučajnyh processov, Tome 21 (2016) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/THSP_2016_21_1_a0/

[1] A. N. Baushev, “On the weak convergence of probability measures in Orlicz spaces”, Theory Probab. Appl., 40:3 (1995), 420–429 | DOI | MR

[2] A. N. Baushev, “On the weak convergence of probability measures in a Banach space”, J. Math. Sci., 109:6 (2002), 2037–2046 | DOI | MR

[3] P. Billingsley, Convergence of probability measures, Wiley, New York, 1968 | MR | Zbl

[4] V. I. Bogachev, Measure theory, v. 1, 2, Springer, New York, 2007 | MR | Zbl

[5] Russian Math. Surveys., 67:5, 785–890 | DOI | DOI | MR | Zbl

[6] V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker–Planck–Kolmogorov equations, Amer. Math. Soc., Providence, Rhode Island, 2015 | MR | Zbl

[7] Russian Math. Surveys., 31:2, 1–69 | DOI | MR | Zbl

[8] Theory Probab., 18:4 (1973) | MR | Zbl

[9] H. Cremers, D. Kadelka, “On weak convergence of stochastic processes with Lusin path spaces”, Manuscripta Math., 45 (1984), 115–125 | DOI | MR | Zbl

[10] H. Cremers, D. Kadelka, “On weak convergence of integral functionals of stochastic processes with applications to processes taking paths in $L_p^E$”, Stoch. Processes Appl., 21 (1986), 305–317 | DOI | MR | Zbl

[11] R. M. Dudley, Real analysis and probability, Wadsworth Brooks, Pacific Grove, California, 1989 | MR | Zbl

[12] R. Fortet, E. Mourier, “Convergence de la répartition empirique vers la répartition théorique”, Ann. Sci. l'École Norm. Sup., 70:3 (1953), 267–285 | MR | Zbl

[13] v. 1, Moscow, 1971 | Zbl

[14] L. Š. Grinblat, “A limit theorem for measurable random processes and its applications”, Proc. Amer. Math. Soc., 61 (1976), 371–376 | DOI | MR

[15] L. Š. Grinblat, “Convergence of probability measures on separable Banach spaces”, Proc. Amer. Math. Soc., 67 (1977), 321–323 | DOI | MR

[16] L. Š. Grinblat, “Convergence of measurable random functions”, Proc. Amer. Math. Soc., 74 (1979), 322–325 | DOI | MR

[17] Ukrainian Math. J., 32:1, 19–25 | DOI | MR | Zbl | Zbl

[18] L. V. Kantorovich, G. Sh. Rubinstein, “On a space of completely additive functions”, Vestnik Leningrad. Univ., 13:7 (1958), 52–59 (in Russian) | MR | Zbl

[19] L. Le Cam, “Convergence in distribution of stochastic processes”, Univ. Calif. Publ. Statist., 2 (1957), 207–236 | MR | Zbl

[20] P. A. Meyer, W. A. Zheng, “Tightness criteria for laws of semi-martingales”, Annales l'Inst. H. Poincaré, 20:4 (1984), 353–372 | MR | Zbl

[21] R. P. Pakshirajan, “A note on the weak convergence of probability measures in the $D[0,1]$ space”, Statist. Probab. Lett., 78:6 (2008), 716–719 | DOI | MR | Zbl

[22] D. Pollard, Convergence of stochastic processes, Springer, Berlin – New York, 1984 | MR | Zbl

[23] R. Rebolledo, “Topologie faible et méta-stabilité”, Séminaire de probabilités XXI, Lecture Notes in Math., 1247, 1987, 545–562 | MR

[24] H. Sadi, “Une condition nécessaire et suffisante pour la convergence en pseudo-loi des processus”, Séminaire de probabilités XXII, Lecture Notes in Math., 1321, 1988, 434–437 | DOI | MR | Zbl

[25] H. Tsukahara, “On the convergence of measurable processes and prediction processes”, Illinois J. Math., 51:4 (2007), 1231–1242 | MR | Zbl

[26] A. W. van der Vaart, J. A. Wellner, Weak convergence and empirical processes. With applications to statistics, Springer-Verlag, New York, 1996 | MR | Zbl