Positivity of transition probabilities of infinite-dimensional diffusion processes on ellipsoids
Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 85-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider diffusion processes in Hilbert spaces with constant non-degenerate diffusion operators and show that, under broad assumptions on the drift, the transition probabilities of the process are positive on ellipsoids associated with the diffusion operator. This is an infinite-dimensional analogue of positivity of densities of transition probabilities. Our results apply to diffusions corresponding to stochastic partial differential equations.
Keywords: Diffusion process in Hilbert space; SPDE; support of distribution; positive density; mild solution; variational solution; Kolmogorov equation.
@article{THSP_2015_20_2_a5,
     author = {Oxana Manita},
     title = {Positivity of transition probabilities of infinite-dimensional diffusion processes on ellipsoids},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {85--96},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a5/}
}
TY  - JOUR
AU  - Oxana Manita
TI  - Positivity of transition probabilities of infinite-dimensional diffusion processes on ellipsoids
JO  - Teoriâ slučajnyh processov
PY  - 2015
SP  - 85
EP  - 96
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a5/
LA  - en
ID  - THSP_2015_20_2_a5
ER  - 
%0 Journal Article
%A Oxana Manita
%T Positivity of transition probabilities of infinite-dimensional diffusion processes on ellipsoids
%J Teoriâ slučajnyh processov
%D 2015
%P 85-96
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a5/
%G en
%F THSP_2015_20_2_a5
Oxana Manita. Positivity of transition probabilities of infinite-dimensional diffusion processes on ellipsoids. Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 85-96. http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a5/

[1] A. Agrachev, S. Kuksin, A. Sarychev, A. Shirikyan, “On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations”, Annales de l'Institut Henri Poincare (B) Probability and Statistics, 43:4 (2007), 399–415 | DOI | MR | Zbl

[2] V. Barbu, V. I. Bogachev, G. Da Prato, M. Röckner, “Weak solutions to the stochastic porous media equation via Kolmogorov equations: the degenerate case”, Journal of Functional Analysis, 237:1 (2006), 54–75 | DOI | MR | Zbl

[3] L. Beznea, N. Boboc, M. Röckner, “Markov processes associated with $L^p$-resolvents and applications to stochastic differential equations on Hilbert space”, Journal of Evolutional Equations, 6:4 (2006), 745–772 | DOI | MR | Zbl

[4] V. I. Bogachev, G. Da Prato, M. Röckner, S. V. Shaposhnikov, “An analytic approach to infinite-dimensional continuity and Fokker–Planck–Kolmogorov equations”, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, XIV:3 (2015), 983–1023 | MR | Zbl

[5] V. I. Bogachev, G. Da Prato, M. Röckner, “Parabolic equations for measures on infinite-dimensional spaces”, Doklady Mathematics, 78:1 (2008) | DOI | MR

[6] V. I. Bogachev, N. V. Krylov, M. Röckner, “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Communications in Partial Differential Equations, 26:11 (2001), 2037–2080 | DOI | MR | Zbl

[7] V. I. Bogachev, Gaussian measures, AMS, 1998 | MR | Zbl

[8] G. Da Prato, M. Röckner, F.-Y. Wang, “Singular Stochastic Equations on Hilbert Spaces: Harnack Inequalities for their Transition Semigroups”, J. Funct. Anal., 257:4 (2009) | DOI | MR | Zbl

[9] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge, 1992 | MR | Zbl

[10] G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996 | MR | Zbl

[11] S. N. Ethier, T. G. Kurtz, Markov processes : characterization and convergence, Wiley series in probability and mathematical statistics, J.Wiley and Sons, New York, Chichester, 1986 | DOI | MR | Zbl

[12] I. I. Gikhman, A. V. Skorokhod, Stochastic Differential Equations, Springer-Verlag, New York, 1972 | Zbl

[13] I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, 113, Springer-Verlag, New York, 1998 | DOI | MR

[14] T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer-Verlag, Berlin-Heidelberg, 1995 | MR | Zbl

[15] N. V. Krylov, “On the selection of a Markov process from a system of processes and the construction of quasi-diffusion processes”, Mathematics of the USSR-Izvestiya, 7:3 (1973), 691–709 | DOI | MR

[16] N. V. Krylov, B. L. Rozovskii,, “Stochastic evolution equations”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., XIV, VINITI, M., 1979, 71–146 | MR

[17] S. Kuksin, A. Shirikyan, Mathematics of Two-Dimensional Turbulence, Cambridge University Press, 2012 | MR | Zbl

[18] J. C. Mattingly, E. Pardoux, Malliavin Calculus for the Stochastic 2D Navier–Stokes Equation, arXiv: math/0407215 [math.PR] | MR

[19] B. Oksendal, Stochastic Differential Equations: An Introduction with Applications, Springer, 2014

[20] C. Prévôt, M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, 1905, Springer, Berlin-Heidelberg, 2007 | MR

[21] D. W. Stroock, S. R. S. Varadhan, “On the support of diffusion processes with applications to the strong maximum principle”, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, v. 3, Probability Theory, University of California Press, Berkeley, Calif., 1972, 333–359 | MR | Zbl

[22] A. D. Wentzell, A Course in the Theory of Stochastic Processes, McGraw-Hill, New York, 1981 | Zbl