Positivity of transition probabilities of infinite-dimensional diffusion processes on ellipsoids
Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 85-96

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider diffusion processes in Hilbert spaces with constant non-degenerate diffusion operators and show that, under broad assumptions on the drift, the transition probabilities of the process are positive on ellipsoids associated with the diffusion operator. This is an infinite-dimensional analogue of positivity of densities of transition probabilities. Our results apply to diffusions corresponding to stochastic partial differential equations.
Keywords: Diffusion process in Hilbert space; SPDE; support of distribution; positive density; mild solution; variational solution; Kolmogorov equation.
@article{THSP_2015_20_2_a5,
     author = {Oxana Manita},
     title = {Positivity of transition probabilities of infinite-dimensional diffusion processes on ellipsoids},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {85--96},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a5/}
}
TY  - JOUR
AU  - Oxana Manita
TI  - Positivity of transition probabilities of infinite-dimensional diffusion processes on ellipsoids
JO  - Teoriâ slučajnyh processov
PY  - 2015
SP  - 85
EP  - 96
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a5/
LA  - en
ID  - THSP_2015_20_2_a5
ER  - 
%0 Journal Article
%A Oxana Manita
%T Positivity of transition probabilities of infinite-dimensional diffusion processes on ellipsoids
%J Teoriâ slučajnyh processov
%D 2015
%P 85-96
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a5/
%G en
%F THSP_2015_20_2_a5
Oxana Manita. Positivity of transition probabilities of infinite-dimensional diffusion processes on ellipsoids. Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 85-96. http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a5/