On the large-deviation principle for the winding angle of a Brownian trajectory around the origin
Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 63-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we analyse the possibility of obtaining the large-deviation principle for the winding angle of a Brownian motion trajectory around the origin. We prove the weak large-deviation principle and show that the full large-deviation principle cannot hold with any rate function.
Keywords: Large deviations, windings, winding numbers, Brownian motion.
@article{THSP_2015_20_2_a4,
     author = {V. A. Kuznetsov},
     title = {On the large-deviation principle for the winding angle of a {Brownian} trajectory around the origin},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {63--84},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a4/}
}
TY  - JOUR
AU  - V. A. Kuznetsov
TI  - On the large-deviation principle for the winding angle of a Brownian trajectory around the origin
JO  - Teoriâ slučajnyh processov
PY  - 2015
SP  - 63
EP  - 84
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a4/
LA  - en
ID  - THSP_2015_20_2_a4
ER  - 
%0 Journal Article
%A V. A. Kuznetsov
%T On the large-deviation principle for the winding angle of a Brownian trajectory around the origin
%J Teoriâ slučajnyh processov
%D 2015
%P 63-84
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a4/
%G en
%F THSP_2015_20_2_a4
V. A. Kuznetsov. On the large-deviation principle for the winding angle of a Brownian trajectory around the origin. Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 63-84. http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a4/

[1] F. Spitzer, “Some theorems concerning 2-dimensional Brownian motion”, Trans. Amer. Math. Soc., 87 (1958), 187–197 | MR | Zbl

[2] Z. Shi, “Liminf behaviours of the windings and Levy's stochastic areas of planar Brownian motion”, Séminaire de probabilités de Strasbourg, 28 (1994), 122–137 | MR

[3] J. Bertoin, W. Werner, “Asymptotic windings of planar Brownian motion revisited via the Ornstein-Uhlenbeck process”, Séminaire de probabilités de Strasbourg, 28 (1994), 138–152 | MR

[4] M. A. Berger, P. H. Roberts, “On the winding number problem with finite steps”, Advances in Applied Probability, 20:2 (1988), 261–274 | DOI | MR | Zbl

[5] M. Yor, “Etude asymptotique des nombres de tours de plusieurs mouvements browniens complexes correles”, Progress in Probability, 28 (1991), 441–455 | MR

[6] M. Grunwald, “Sanov results for Glauber spin-glass dynamics”, Probability Theory and Related Fields, 106:2 (1996), 187–232 | DOI | MR | Zbl

[7] K. Itô, H. P. McKean, Diffusion Processes and their sample paths, Springer, Berlin, 1996 | Zbl

[8] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Springer, Berlin, 2010 | MR | Zbl

[9] J. Feng, T. G. Kurtz, Large deviations for stochastic processes, American Mathematical Society, 2006 | MR | Zbl

[10] A. A. Dorogovtsev, O. V. Ostapenko, “Large deviations for flows of interacting Brownian motions”, Stochastics and Dynamics, 10:3 (2010), 315–339 | DOI | MR | Zbl