Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2015_20_2_a4, author = {V. A. Kuznetsov}, title = {On the large-deviation principle for the winding angle of a {Brownian} trajectory around the origin}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {63--84}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a4/} }
TY - JOUR AU - V. A. Kuznetsov TI - On the large-deviation principle for the winding angle of a Brownian trajectory around the origin JO - Teoriâ slučajnyh processov PY - 2015 SP - 63 EP - 84 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a4/ LA - en ID - THSP_2015_20_2_a4 ER -
V. A. Kuznetsov. On the large-deviation principle for the winding angle of a Brownian trajectory around the origin. Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 63-84. http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a4/
[1] F. Spitzer, “Some theorems concerning 2-dimensional Brownian motion”, Trans. Amer. Math. Soc., 87 (1958), 187–197 | MR | Zbl
[2] Z. Shi, “Liminf behaviours of the windings and Levy's stochastic areas of planar Brownian motion”, Séminaire de probabilités de Strasbourg, 28 (1994), 122–137 | MR
[3] J. Bertoin, W. Werner, “Asymptotic windings of planar Brownian motion revisited via the Ornstein-Uhlenbeck process”, Séminaire de probabilités de Strasbourg, 28 (1994), 138–152 | MR
[4] M. A. Berger, P. H. Roberts, “On the winding number problem with finite steps”, Advances in Applied Probability, 20:2 (1988), 261–274 | DOI | MR | Zbl
[5] M. Yor, “Etude asymptotique des nombres de tours de plusieurs mouvements browniens complexes correles”, Progress in Probability, 28 (1991), 441–455 | MR
[6] M. Grunwald, “Sanov results for Glauber spin-glass dynamics”, Probability Theory and Related Fields, 106:2 (1996), 187–232 | DOI | MR | Zbl
[7] K. Itô, H. P. McKean, Diffusion Processes and their sample paths, Springer, Berlin, 1996 | Zbl
[8] A. Dembo, O. Zeitouni, Large deviations techniques and applications, Springer, Berlin, 2010 | MR | Zbl
[9] J. Feng, T. G. Kurtz, Large deviations for stochastic processes, American Mathematical Society, 2006 | MR | Zbl
[10] A. A. Dorogovtsev, O. V. Ostapenko, “Large deviations for flows of interacting Brownian motions”, Stochastics and Dynamics, 10:3 (2010), 315–339 | DOI | MR | Zbl