Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2015_20_2_a3, author = {Alexander V. Kolesnikov and Danila A. Zaev}, title = {Exchangeable optimal transportation and log-concavity}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {54--62}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a3/} }
Alexander V. Kolesnikov; Danila A. Zaev. Exchangeable optimal transportation and log-concavity. Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 54-62. http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a3/
[1] V. I. Bogachev, Measure theory, v. 1,2, Springer, Berlin – New York, 2007 | MR | Zbl
[2] V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Russian Math. Surveys, 67:5 (2012), 785–890 | DOI | MR | Zbl
[3] C. Borell, “Convex measures on locally convex spaces”, Arkiv Matematik, 12:1 (1974), 239–252 | DOI | MR | Zbl
[4] J. A. Cuesta, C. Matran, “Notes on the Wasserstein metric in Hilbert spaces”, Ann. Probab., 17:3 (1989), 1264–1276 | DOI | MR | Zbl
[5] O. Kallenberg, Probabilistic symmetries and invariance principles, Springer-Verlag, New York, 2005 | MR | Zbl
[6] A. V. Kolesnikov, “On Sobolev regularity of mass transport and transportation inequalities”, Theory Probab. Appl., 57:2 (2012), 243–264 | DOI | MR
[7] A. V. Kolesnikov, D. A. Zaev, “Optimal transportation of processes with infinite Kantorovich distance. Independence and symmetry” (to appear)
[8] A. Moameni, “Invariance properties of the Monge–Kantorovich mass transport problem”, Discr. Cont. Dyn. Syst., 36:5 (2016), 253–2671
[9] A. M. Vershik, “The problem of describing central measures on the path spaces of graded graphs”, Funct. Anal. Its Appl., 48:4 (2014), 256–271 | DOI | MR | Zbl
[10] C. Villani, Topics in optimal transportation, Amer. Math. Soc., Rhode Island, 2003 | MR | Zbl
[11] D. A. Zaev, “On the Monge–Kantorovich problem with additional linear constraints”, Mat. Zametki, 98:5 (2015), 664–683 | DOI | MR | Zbl
[12] D. A. Zaev, “On ergodic decompositions related to the Kantorovich problem”, Zapiski Semin. POMI, 437, 2015, 100–130