Exchangeable optimal transportation and log-concavity
Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 54-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Monge and Kantorovich transportation problems on $\mathbb{R}^{\infty}$ within the class of exchangeable measures. With the help of the de Finetti decomposition theorem the problem is reduced to an unconstrained optimal transportation problem on a Hilbert space. We find sufficient conditions for convergence of finite-dimensional approximations to the Monge solution. The result holds, in particular, under certain analytical assumptions involving log-concavity of the target measure. As a by-product we obtain the following result: any uniformly log-concave exchangeable sequence of random variables is i.i.d.
Keywords: log-concave measures, exchangeable measures, de Finetti theorem, Caffarelli contraction theorem.
Mots-clés : Optimal transportation
@article{THSP_2015_20_2_a3,
     author = {Alexander V. Kolesnikov and Danila A. Zaev},
     title = {Exchangeable optimal transportation and log-concavity},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {54--62},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a3/}
}
TY  - JOUR
AU  - Alexander V. Kolesnikov
AU  - Danila A. Zaev
TI  - Exchangeable optimal transportation and log-concavity
JO  - Teoriâ slučajnyh processov
PY  - 2015
SP  - 54
EP  - 62
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a3/
LA  - en
ID  - THSP_2015_20_2_a3
ER  - 
%0 Journal Article
%A Alexander V. Kolesnikov
%A Danila A. Zaev
%T Exchangeable optimal transportation and log-concavity
%J Teoriâ slučajnyh processov
%D 2015
%P 54-62
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a3/
%G en
%F THSP_2015_20_2_a3
Alexander V. Kolesnikov; Danila A. Zaev. Exchangeable optimal transportation and log-concavity. Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 54-62. http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a3/

[1] V. I. Bogachev, Measure theory, v. 1,2, Springer, Berlin – New York, 2007 | MR | Zbl

[2] V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Russian Math. Surveys, 67:5 (2012), 785–890 | DOI | MR | Zbl

[3] C. Borell, “Convex measures on locally convex spaces”, Arkiv Matematik, 12:1 (1974), 239–252 | DOI | MR | Zbl

[4] J. A. Cuesta, C. Matran, “Notes on the Wasserstein metric in Hilbert spaces”, Ann. Probab., 17:3 (1989), 1264–1276 | DOI | MR | Zbl

[5] O. Kallenberg, Probabilistic symmetries and invariance principles, Springer-Verlag, New York, 2005 | MR | Zbl

[6] A. V. Kolesnikov, “On Sobolev regularity of mass transport and transportation inequalities”, Theory Probab. Appl., 57:2 (2012), 243–264 | DOI | MR

[7] A. V. Kolesnikov, D. A. Zaev, “Optimal transportation of processes with infinite Kantorovich distance. Independence and symmetry” (to appear)

[8] A. Moameni, “Invariance properties of the Monge–Kantorovich mass transport problem”, Discr. Cont. Dyn. Syst., 36:5 (2016), 253–2671

[9] A. M. Vershik, “The problem of describing central measures on the path spaces of graded graphs”, Funct. Anal. Its Appl., 48:4 (2014), 256–271 | DOI | MR | Zbl

[10] C. Villani, Topics in optimal transportation, Amer. Math. Soc., Rhode Island, 2003 | MR | Zbl

[11] D. A. Zaev, “On the Monge–Kantorovich problem with additional linear constraints”, Mat. Zametki, 98:5 (2015), 664–683 | DOI | MR | Zbl

[12] D. A. Zaev, “On ergodic decompositions related to the Kantorovich problem”, Zapiski Semin. POMI, 437, 2015, 100–130