Exchangeable optimal transportation and log-concavity
Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 54-62

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Monge and Kantorovich transportation problems on $\mathbb{R}^{\infty}$ within the class of exchangeable measures. With the help of the de Finetti decomposition theorem the problem is reduced to an unconstrained optimal transportation problem on a Hilbert space. We find sufficient conditions for convergence of finite-dimensional approximations to the Monge solution. The result holds, in particular, under certain analytical assumptions involving log-concavity of the target measure. As a by-product we obtain the following result: any uniformly log-concave exchangeable sequence of random variables is i.i.d.
Keywords: log-concave measures, exchangeable measures, de Finetti theorem, Caffarelli contraction theorem.
Mots-clés : Optimal transportation
@article{THSP_2015_20_2_a3,
     author = {Alexander V. Kolesnikov and Danila A. Zaev},
     title = {Exchangeable optimal transportation and log-concavity},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {54--62},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a3/}
}
TY  - JOUR
AU  - Alexander V. Kolesnikov
AU  - Danila A. Zaev
TI  - Exchangeable optimal transportation and log-concavity
JO  - Teoriâ slučajnyh processov
PY  - 2015
SP  - 54
EP  - 62
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a3/
LA  - en
ID  - THSP_2015_20_2_a3
ER  - 
%0 Journal Article
%A Alexander V. Kolesnikov
%A Danila A. Zaev
%T Exchangeable optimal transportation and log-concavity
%J Teoriâ slučajnyh processov
%D 2015
%P 54-62
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a3/
%G en
%F THSP_2015_20_2_a3
Alexander V. Kolesnikov; Danila A. Zaev. Exchangeable optimal transportation and log-concavity. Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 54-62. http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a3/