Integral equation for the transition density of the multidimensional Markov random flight
Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 42-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Markov random flight $\mathbf{X}(t)$ in the Euclidean space $\Bbb R^m, \; m\ge 2,$ starting from the origin $0\in\Bbb R^m$ that, at Poisson-paced times, changes its direction at random according to arbitrary distribution on the unit $(m-1)$-dimensional sphere $S^m(0,1)$ having absolutely continuous density. For any time instant $t>0$, the convolution-type recurrent relations for the joint and conditional densities of the process $\mathbf{X}(t)$ and of the number of changes of direction, are obtained. Using these relations, we derive an integral equation for the transition density of $\mathbf{X}(t)$ whose solution is given in the form of a uniformly convergent series composed of the multiple double convolutions of the singular component of the density with itself. Two important particular cases of the uniform distribution on $S^m( 0,1)$ and of the circular Gaussian law on the unit circle $S^2(0,1)$ are considered separately.
Keywords: Random flight, continuous-time random walk, joint density, conditional density, transition density, integral equation, characteristic function, uniform distribution on sphere, circular Gaussian law.
Mots-clés : convolution, Fourier transform
@article{THSP_2015_20_2_a2,
     author = {Alexander D. Kolesnik},
     title = {Integral equation for the transition density of the multidimensional {Markov} random flight},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {42--53},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a2/}
}
TY  - JOUR
AU  - Alexander D. Kolesnik
TI  - Integral equation for the transition density of the multidimensional Markov random flight
JO  - Teoriâ slučajnyh processov
PY  - 2015
SP  - 42
EP  - 53
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a2/
LA  - en
ID  - THSP_2015_20_2_a2
ER  - 
%0 Journal Article
%A Alexander D. Kolesnik
%T Integral equation for the transition density of the multidimensional Markov random flight
%J Teoriâ slučajnyh processov
%D 2015
%P 42-53
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a2/
%G en
%F THSP_2015_20_2_a2
Alexander D. Kolesnik. Integral equation for the transition density of the multidimensional Markov random flight. Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 42-53. http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a2/

[1] P. Becker-Kern, M. M. Meerschaert, H.-P. Scheffler, “Limit theorems for coupled continuous time random walks”, Ann. Probab., 32 (2004), 730–756 | MR | Zbl

[2] A. Ghosh, R. Rastegar, A. Roitershtein, “On a directionally reinforced random walk”, Proc. Amer. Math. Soc., 142 (2014), 3269–3283 | DOI | MR | Zbl

[3] A. D. Kolesnik, “The explicit probability distribution of a six-dimensional random flight”, Theory Stoch. Process., 15:31 (2009), 33–39 | MR | Zbl

[4] A. D. Kolesnik, “Random motions at finite speed in higher dimensions”, J. Statist. Phys., 131 (2008), 1039–1065 | DOI | MR | Zbl

[5] A. D. Kolesnik, “Asymptotic relation for the density of a multidimensional random evolution with rare Poisson switchings”, Ukrain. Math. J., 60 (2008), 1915–1926 | DOI | MR | Zbl

[6] A. D. Kolesnik, “A note on planar random motion at finite speed”, J. Appl. Probab., 44 (2007), 838–842 | DOI | MR | Zbl

[7] A. D. Kolesnik, “A four-dimensional random motion at finite speed”, J. Appl. Probab., 43 (2006), 1107–1118 | DOI | MR | Zbl

[8] A. D. Kolesnik, E. Orsingher, “A planar random motion with an infinite number of directions controlled by the damped wave equation”, J. Appl. Probab., 42 (2005), 1168–1182 | DOI | MR | Zbl

[9] A. D. Kolesnik, M. A. Pinsky, “Random evolutions are driven by the hyperparabolic operators”, J. Statist. Phys., 142 (2011), 828–846 | DOI | MR | Zbl

[10] G. Le Caër, “Two-step Dirichlet random walks”, Physica A, 430 (2015), 201–215 | DOI | MR

[11] G. Le Caër, “A new family of solvable Pearson-Dirichlet random walks”, J. Statist. Phys., 144 (2011), 23–45 | DOI | MR | Zbl

[12] G. Le Caër, “A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths”, J. Statist. Phys., 140 (2010), 728–751 | DOI | MR | Zbl

[13] G. Letac, M. Piccioni, “Dirichlet random walks”, J. Appl. Probab., 51 (2014), 1081–1099 | DOI | MR | Zbl

[14] J. Masoliver, J. M. Porrá, G. H. Weiss, “Some two and three-dimensional persistent random walks”, Physica A, 193 (1993), 469–482 | DOI

[15] M. M. Meerschaert, P. Straka, “Semi-Markov approach to continuous-time random walk limit processes”, Ann. Probab., 42 (2014), 1699–1723 | DOI | MR | Zbl

[16] M. M. Meerschaert, H.-P. Scheffler, “Limit theorems for continuous time random walks with infinite mean waiting times”, J. Appl. Probab., 41 (2004), 623–638 | DOI | MR | Zbl

[17] A. A. Pogorui, R. M. Rodriguez-Dagnino, “Random motion with uniformly distributed directions and random velocity”, J. Statist. Phys., 147 (2012), 1216–1225 | DOI | MR | Zbl

[18] A. A. Pogorui, R. M. Rodriguez-Dagnino, “Isotropic random motion at finite speed with K-Erlang distributed direction alternations”, J. Statist. Phys., 145 (2011), 102–112 | DOI | MR | Zbl

[19] W. Stadje, “Exact probability distributions for non-correlated random walk models”, J. Statist. Phys., 56 (1989), 415–435 | DOI | MR | Zbl

[20] W. Stadje, “The exact probability distribution of a two-dimensional random walk”, J. Statist. Phys., 46 (1987), 207–216 | DOI | MR