Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2015_20_2_a2, author = {Alexander D. Kolesnik}, title = {Integral equation for the transition density of the multidimensional {Markov} random flight}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {42--53}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a2/} }
TY - JOUR AU - Alexander D. Kolesnik TI - Integral equation for the transition density of the multidimensional Markov random flight JO - Teoriâ slučajnyh processov PY - 2015 SP - 42 EP - 53 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a2/ LA - en ID - THSP_2015_20_2_a2 ER -
Alexander D. Kolesnik. Integral equation for the transition density of the multidimensional Markov random flight. Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 42-53. http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a2/
[1] P. Becker-Kern, M. M. Meerschaert, H.-P. Scheffler, “Limit theorems for coupled continuous time random walks”, Ann. Probab., 32 (2004), 730–756 | MR | Zbl
[2] A. Ghosh, R. Rastegar, A. Roitershtein, “On a directionally reinforced random walk”, Proc. Amer. Math. Soc., 142 (2014), 3269–3283 | DOI | MR | Zbl
[3] A. D. Kolesnik, “The explicit probability distribution of a six-dimensional random flight”, Theory Stoch. Process., 15:31 (2009), 33–39 | MR | Zbl
[4] A. D. Kolesnik, “Random motions at finite speed in higher dimensions”, J. Statist. Phys., 131 (2008), 1039–1065 | DOI | MR | Zbl
[5] A. D. Kolesnik, “Asymptotic relation for the density of a multidimensional random evolution with rare Poisson switchings”, Ukrain. Math. J., 60 (2008), 1915–1926 | DOI | MR | Zbl
[6] A. D. Kolesnik, “A note on planar random motion at finite speed”, J. Appl. Probab., 44 (2007), 838–842 | DOI | MR | Zbl
[7] A. D. Kolesnik, “A four-dimensional random motion at finite speed”, J. Appl. Probab., 43 (2006), 1107–1118 | DOI | MR | Zbl
[8] A. D. Kolesnik, E. Orsingher, “A planar random motion with an infinite number of directions controlled by the damped wave equation”, J. Appl. Probab., 42 (2005), 1168–1182 | DOI | MR | Zbl
[9] A. D. Kolesnik, M. A. Pinsky, “Random evolutions are driven by the hyperparabolic operators”, J. Statist. Phys., 142 (2011), 828–846 | DOI | MR | Zbl
[10] G. Le Caër, “Two-step Dirichlet random walks”, Physica A, 430 (2015), 201–215 | DOI | MR
[11] G. Le Caër, “A new family of solvable Pearson-Dirichlet random walks”, J. Statist. Phys., 144 (2011), 23–45 | DOI | MR | Zbl
[12] G. Le Caër, “A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths”, J. Statist. Phys., 140 (2010), 728–751 | DOI | MR | Zbl
[13] G. Letac, M. Piccioni, “Dirichlet random walks”, J. Appl. Probab., 51 (2014), 1081–1099 | DOI | MR | Zbl
[14] J. Masoliver, J. M. Porrá, G. H. Weiss, “Some two and three-dimensional persistent random walks”, Physica A, 193 (1993), 469–482 | DOI
[15] M. M. Meerschaert, P. Straka, “Semi-Markov approach to continuous-time random walk limit processes”, Ann. Probab., 42 (2014), 1699–1723 | DOI | MR | Zbl
[16] M. M. Meerschaert, H.-P. Scheffler, “Limit theorems for continuous time random walks with infinite mean waiting times”, J. Appl. Probab., 41 (2004), 623–638 | DOI | MR | Zbl
[17] A. A. Pogorui, R. M. Rodriguez-Dagnino, “Random motion with uniformly distributed directions and random velocity”, J. Statist. Phys., 147 (2012), 1216–1225 | DOI | MR | Zbl
[18] A. A. Pogorui, R. M. Rodriguez-Dagnino, “Isotropic random motion at finite speed with K-Erlang distributed direction alternations”, J. Statist. Phys., 145 (2011), 102–112 | DOI | MR | Zbl
[19] W. Stadje, “Exact probability distributions for non-correlated random walk models”, J. Statist. Phys., 56 (1989), 415–435 | DOI | MR | Zbl
[20] W. Stadje, “The exact probability distribution of a two-dimensional random walk”, J. Statist. Phys., 46 (1987), 207–216 | DOI | MR