Arginf-sets of multivariate cadlag processes and their convergence in hyperspace topologies
Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 13-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_n, n \in \mathbb{N}$, be a sequence of stochastic processes with trajectories in the multivariate Skorokhod-space $D(\mathbb{R}^d)$. If $A(X_n)$ denotes the set of all infimizing points of $X_n$, then $A(X_n)$ is shown to be a random closed set, i.e. a random variable in the hyperspace $\mathcal{F}$, which consists of all closed subsets of $\mathbb{R}^d$. We prove that if $X_n$ converges to $X$ in $D(\mathbb{R}^d)$ in probability, almost surely or in distribution, then $A(X_n)$ converges in the analogous manner to $A(X)$ in $\mathcal{F}$ endowed with appropriate hyperspace topologies. Our results immediately yield continuous mapping theorems for measurable selections $\xi_n \in A(X_n)$. Here we do not require that $A(X)$ is a singleton as it is usually assumed in the literature. In particular it turns out that $\xi_n$ converges in distribution to a Choquet capacity, namely the capacity functional of $A(X)$. In fact, this motivates us to extend the classical concept of weak convergence. In statistical applications it facilitates the construction of confidence regions based on $M$-estimators even in the case that the involved limit process has no longer an a.s. unique infimizer as it was necessary so far.
Keywords: Multivariate Skorokhod-space, weak convergence, sets of infimizing points, random closed sets, hyperspace topologies, continuous mapping theorems.
Mots-clés : epi-convergence, Choquet capacity
@article{THSP_2015_20_2_a1,
     author = {D. Ferger},
     title = {Arginf-sets of multivariate cadlag processes and their convergence in hyperspace topologies},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {13--41},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a1/}
}
TY  - JOUR
AU  - D. Ferger
TI  - Arginf-sets of multivariate cadlag processes and their convergence in hyperspace topologies
JO  - Teoriâ slučajnyh processov
PY  - 2015
SP  - 13
EP  - 41
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a1/
LA  - en
ID  - THSP_2015_20_2_a1
ER  - 
%0 Journal Article
%A D. Ferger
%T Arginf-sets of multivariate cadlag processes and their convergence in hyperspace topologies
%J Teoriâ slučajnyh processov
%D 2015
%P 13-41
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a1/
%G en
%F THSP_2015_20_2_a1
D. Ferger. Arginf-sets of multivariate cadlag processes and their convergence in hyperspace topologies. Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 13-41. http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a1/

[1] H. Attouch, Variational Convergence for Functions and Operators, Pitman Advanced Publishing Program, Boston–London–Melbourne, 1984 | MR | Zbl

[2] P. J. Bickel, M. J. Wichura, “Convergence criteria for multiparameter stochastic processes and some applications”, Ann. Math. Statist., 42:5 (1971), 1656–1670 | DOI | MR | Zbl

[3] P. Billingsley, Convergence of Probability Measures, John Wiley Sons, New York, 1968 | MR | Zbl

[4] P. Billingsley, Convergence of Probability Measures, Second Edition, John Wiley Sons, New York, 1999 | MR

[5] D. L. Cohn, Measure Theory, Birkhäuser, Boston–Basel–Berlin, 1997

[6] G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäuser, Boston– Basel–Berlin, 1993 | MR | Zbl

[7] J. H. Dshalalow, Real Analysis, Chapman Hall/CRC, Boca Raton–London–New York–Washington, 2001 | MR | Zbl

[8] D. Ferger, “On the argmin-sets of stochastic processes and their distributional convergence in Fell-type topologies”, Kybernetika, 47:6 (2011), 955–968 | MR | Zbl

[9] O. Gersch, Convergence in Distribution of Random Closed Sets and Applications in Stability, Thesis (PhD), Technische Universität Ilmenau, 2007

[10] P. Gänssler, W. Stute, Wahrscheinlichkeitstheorie, Springer-Verlag, Berlin–Heidelberg, 1977 | MR

[11] O. Kallenberg, Foundations of Modern Probability, Springer-Verlag, Berlin–Heidelberg, 1997 | MR | Zbl

[12] A. Lagodowski, Z. Rychlik, “Weak convergence of probability meaures on the function space $D_d[0,\infty)$”, Bull. Polish Acad. Sci. Math., 34:5-6 (1986), 329–335 | MR | Zbl

[13] T. Norberg, “Convergence and existence of random set distributions”, Ann. Probab., 12:3 (1984), 726–732 | DOI | MR | Zbl

[14] G. Matheron, Random Sets and Integral Geometry, John Wiley Sons, New York–London–Sydney, 1975 | MR | Zbl

[15] I. Molchanov, Theory of Random Sets, Springer-Verlag, London, 2005 | MR | Zbl

[16] G. Neuhaus, “On weak convergence of stochastic processes with multidimensional time parameter”, Ann. Math. Statist., 42:4 (1971), 1285–1295 | DOI | MR | Zbl

[17] H. T. Nguyen, An Introduction to Random Sets, Chapman Hall/CRC, Boca Raton–London–New York, 2006 | MR | Zbl

[18] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967 | MR | Zbl

[19] G. Ch. Pflug, “Asymptotic dominance and confidence for solutions of stochastic programs”, Czechoslovak J. Oper. Res., 1:1 (1992), 21–30 | Zbl

[20] D. Pollard, Convergence of Stochastic Processes, Springer-Verlag, New York–Berlin–Heidelberg–Tokyo, 1984 | MR | Zbl

[21] R. T. Rockafellar, R. J-B. Wets, Variational Analysis, Springer-Verlag, Berlin–Heidelberg–New York, 1998 | MR | Zbl

[22] G. Salinetti, R. J-B. Wets, “On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima”, Math. Oper. Res., 11:3 (1986), 385–419 | DOI | MR | Zbl

[23] E. Seijo, B. A. Sen, “A continuous mapping theorem for the smallest argmax functional”, Elektron. J. Stat., 5 (2011), 421–439 | DOI | MR | Zbl

[24] G. Shorack, Probability for Statisticians, Springer-Verlag, New York, 2000 | MR | Zbl

[25] M. L. Straf, A general Skorokhod space and its applications to the weak convergence of stochastic processes with several parameters, Ph.D. dissertation, University of Chicago, 1969 | MR

[26] M. L. Straf, “Weak convergence of stochastic processes with several parameters”, Proc. Sixth Berkley Symp. Math. Statist. Prob., 1970, 187–221 | MR

[27] A. W. Van der Vaart, J. A. Wellner, Weak Convergence and Empirical Processes, Springer-Verlag, New York–Berlin–Heidelberg, 1996 | MR | Zbl

[28] S. Vogel, “Qualitative stability of stochastic programs with applications in asymptotic statistics”, Statist. Decisions, 23 (2005), 219–248 | DOI | MR | Zbl

[29] S. Vogel, “Semiconvergence in distribution of random closed sets with applications to random optimization problems”, Ann. Oper. Res., 142 (2006), 269–282 | DOI | MR | Zbl