A survey on Skorokhod representation theorem without separability
Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 1-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be a metric space, $\mathcal{G}$ a $\sigma$-field of subsets of $S$ and $(\mu_n:n\geq 0)$ a sequence of probability measures on $\mathcal{G}$. Say that $(\mu_n)$ admits a Skorokhod representation if, on some probability space, there are random variables $X_n$ with values in $(S,\mathcal{G})$ such that \begin{equation*} X_n\sim\mu_n\text{ for each }n\ge 0\quad\text{and}\quad X_n\rightarrow X_0\text{ in probability}. \end{equation*} We focus on results of the following type: $(\mu_n)$ has a Skorokhod representation if and only if $J(\mu_n,\mu_0)\rightarrow 0$, where $J$ is a suitable distance (or discrepancy index) between probabilities on $\mathcal{G}$. One advantage of such results is that, unlike the usual Skorokhod representation theorem, they apply even if the limit law $\mu_0$ is not separable. The index $J$ is taken to be the bounded Lipschitz metric and the Wasserstein distance.
Keywords: Convergence of probability measures, perfect probability measure, separable probability measure, Skorokhod representation theorem
Mots-clés : uniform distance.
@article{THSP_2015_20_2_a0,
     author = {Patrizia Berti and Luca Pratelli and Pietro Rigo},
     title = {A survey on {Skorokhod} representation theorem without separability},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a0/}
}
TY  - JOUR
AU  - Patrizia Berti
AU  - Luca Pratelli
AU  - Pietro Rigo
TI  - A survey on Skorokhod representation theorem without separability
JO  - Teoriâ slučajnyh processov
PY  - 2015
SP  - 1
EP  - 12
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a0/
LA  - en
ID  - THSP_2015_20_2_a0
ER  - 
%0 Journal Article
%A Patrizia Berti
%A Luca Pratelli
%A Pietro Rigo
%T A survey on Skorokhod representation theorem without separability
%J Teoriâ slučajnyh processov
%D 2015
%P 1-12
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a0/
%G en
%F THSP_2015_20_2_a0
Patrizia Berti; Luca Pratelli; Pietro Rigo. A survey on Skorokhod representation theorem without separability. Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 1-12. http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a0/

[1] T. O. Banakh, V. I. Bogachev, A. V. Kolesnikov, “Topological spaces with Skorokhod representation property”, Ukrainian Math. J., 57 (2005), 1371–1386 | DOI | MR | Zbl

[2] A. Basse-O'Connor, J. Rosinski, “On the uniform convergence of random series in Skorohod space and representations of cadlag infinitely divisible processes”, Ann. Probab., 41 (2013), 4317–4341 | DOI | MR | Zbl

[3] P. Berti, P. Rigo, “Convergence in distribution of non measurable random elements”, Ann. Probab., 32 (2004), 365–379 | DOI | MR | Zbl

[4] P. Berti, L. Pratelli, P. Rigo, “Skorohod representation on a given probability space”, Prob. Theo. Relat. Fields, 137 (2007), 277–288 | DOI | MR | Zbl

[5] P. Berti, L. Pratelli, P. Rigo, “Skorohod representation theorem via disintegrations”, Sankhya, 72 (2010), 208–220 | DOI | MR | Zbl

[6] P. Berti, L. Pratelli, P. Rigo, “A Skorohod representation theorem for uniform distance”, Prob. Theo. Relat. Fields, 150 (2011), 321–335 | DOI | MR | Zbl

[7] P. Berti, L. Pratelli, P. Rigo, “A Skorohod representation theorem without separability”, Electr. Comm. Probab., 18 (2013), 1–12 | MR

[8] P. Berti, L. Pratelli, P. Rigo, “Gluing lemmas and Skorohod representations”, Electr. Comm. Probab., 20 (2015), 1–11 | MR

[9] D. Blackwell, A. Maitra, “Factorization of probability measures and absolutely measurable sets”, Proc. Amer. Math. Soc., 92 (1984), 251–254 | DOI | MR | Zbl

[10] R. M. Dudley, “Distances of probability measures and random variables”, Ann. Math. Statist., 39 (1968), 1563–1572 | MR | Zbl

[11] R. M. Dudley, Uniform central limit theorems, Cambridge University Press, 1999 | MR | Zbl

[12] N. C. Jain, D. Monrad, “Gaussian measures in $B_p$”, Ann. Probab., 11 (1983), 46–57 | DOI | MR | Zbl

[13] A. Jakubowski, “The almost sure Skorokhod representation for subsequences in nonmetric spaces”, Theo. Probab. Appl., 42 (1998), 167–174 | DOI | MR

[14] D. Ramachandran, L. Ruschendorf, “A general duality theorem for marginal problems”, Prob. Theo. Relat. Fields, 101 (1995), 311–319 | DOI | MR | Zbl

[15] J. Sethuraman, “Some extensions of the Skorohod representation theorem”, Sankhya, 64 (2002), 884–893 | MR | Zbl

[16] A. V. Skorokhod, “Limit theorems for stochastic processes”, Theo. Probab. Appl., 1 (1956), 261–290 | DOI | MR

[17] H. Thorisson, “Coupling methods in probability theory”, Scand. J. Statist., 22 (1995), 159–182 | MR | Zbl

[18] H. Thorisson, Convergence in density in finite time windows and the Skorohod representation, arXiv: 1508.07838

[19] A. W Van der Vaart, J. A. Wellner, Weak convergence and empirical processes, Springer, New York, 1996 | MR | Zbl

[20] M. J. Wichura, “On the construction of almost uniformly convergent random variables with given weakly convergent image laws”, Ann. Math. Statist., 41 (1970), 284–291 | DOI | MR | Zbl