A survey on Skorokhod representation theorem without separability
Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 1-12

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be a metric space, $\mathcal{G}$ a $\sigma$-field of subsets of $S$ and $(\mu_n:n\geq 0)$ a sequence of probability measures on $\mathcal{G}$. Say that $(\mu_n)$ admits a Skorokhod representation if, on some probability space, there are random variables $X_n$ with values in $(S,\mathcal{G})$ such that \begin{equation*} X_n\sim\mu_n\text{ for each }n\ge 0\quad\text{and}\quad X_n\rightarrow X_0\text{ in probability}. \end{equation*} We focus on results of the following type: $(\mu_n)$ has a Skorokhod representation if and only if $J(\mu_n,\mu_0)\rightarrow 0$, where $J$ is a suitable distance (or discrepancy index) between probabilities on $\mathcal{G}$. One advantage of such results is that, unlike the usual Skorokhod representation theorem, they apply even if the limit law $\mu_0$ is not separable. The index $J$ is taken to be the bounded Lipschitz metric and the Wasserstein distance.
Keywords: Convergence of probability measures, perfect probability measure, separable probability measure, Skorokhod representation theorem
Mots-clés : uniform distance.
@article{THSP_2015_20_2_a0,
     author = {Patrizia Berti and Luca Pratelli and Pietro Rigo},
     title = {A survey on {Skorokhod} representation theorem without separability},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a0/}
}
TY  - JOUR
AU  - Patrizia Berti
AU  - Luca Pratelli
AU  - Pietro Rigo
TI  - A survey on Skorokhod representation theorem without separability
JO  - Teoriâ slučajnyh processov
PY  - 2015
SP  - 1
EP  - 12
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a0/
LA  - en
ID  - THSP_2015_20_2_a0
ER  - 
%0 Journal Article
%A Patrizia Berti
%A Luca Pratelli
%A Pietro Rigo
%T A survey on Skorokhod representation theorem without separability
%J Teoriâ slučajnyh processov
%D 2015
%P 1-12
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a0/
%G en
%F THSP_2015_20_2_a0
Patrizia Berti; Luca Pratelli; Pietro Rigo. A survey on Skorokhod representation theorem without separability. Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 1-12. http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a0/