Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2015_20_2_a0, author = {Patrizia Berti and Luca Pratelli and Pietro Rigo}, title = {A survey on {Skorokhod} representation theorem without separability}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {1--12}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a0/} }
TY - JOUR AU - Patrizia Berti AU - Luca Pratelli AU - Pietro Rigo TI - A survey on Skorokhod representation theorem without separability JO - Teoriâ slučajnyh processov PY - 2015 SP - 1 EP - 12 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a0/ LA - en ID - THSP_2015_20_2_a0 ER -
Patrizia Berti; Luca Pratelli; Pietro Rigo. A survey on Skorokhod representation theorem without separability. Teoriâ slučajnyh processov, Tome 20 (2015) no. 2, pp. 1-12. http://geodesic.mathdoc.fr/item/THSP_2015_20_2_a0/
[1] T. O. Banakh, V. I. Bogachev, A. V. Kolesnikov, “Topological spaces with Skorokhod representation property”, Ukrainian Math. J., 57 (2005), 1371–1386 | DOI | MR | Zbl
[2] A. Basse-O'Connor, J. Rosinski, “On the uniform convergence of random series in Skorohod space and representations of cadlag infinitely divisible processes”, Ann. Probab., 41 (2013), 4317–4341 | DOI | MR | Zbl
[3] P. Berti, P. Rigo, “Convergence in distribution of non measurable random elements”, Ann. Probab., 32 (2004), 365–379 | DOI | MR | Zbl
[4] P. Berti, L. Pratelli, P. Rigo, “Skorohod representation on a given probability space”, Prob. Theo. Relat. Fields, 137 (2007), 277–288 | DOI | MR | Zbl
[5] P. Berti, L. Pratelli, P. Rigo, “Skorohod representation theorem via disintegrations”, Sankhya, 72 (2010), 208–220 | DOI | MR | Zbl
[6] P. Berti, L. Pratelli, P. Rigo, “A Skorohod representation theorem for uniform distance”, Prob. Theo. Relat. Fields, 150 (2011), 321–335 | DOI | MR | Zbl
[7] P. Berti, L. Pratelli, P. Rigo, “A Skorohod representation theorem without separability”, Electr. Comm. Probab., 18 (2013), 1–12 | MR
[8] P. Berti, L. Pratelli, P. Rigo, “Gluing lemmas and Skorohod representations”, Electr. Comm. Probab., 20 (2015), 1–11 | MR
[9] D. Blackwell, A. Maitra, “Factorization of probability measures and absolutely measurable sets”, Proc. Amer. Math. Soc., 92 (1984), 251–254 | DOI | MR | Zbl
[10] R. M. Dudley, “Distances of probability measures and random variables”, Ann. Math. Statist., 39 (1968), 1563–1572 | MR | Zbl
[11] R. M. Dudley, Uniform central limit theorems, Cambridge University Press, 1999 | MR | Zbl
[12] N. C. Jain, D. Monrad, “Gaussian measures in $B_p$”, Ann. Probab., 11 (1983), 46–57 | DOI | MR | Zbl
[13] A. Jakubowski, “The almost sure Skorokhod representation for subsequences in nonmetric spaces”, Theo. Probab. Appl., 42 (1998), 167–174 | DOI | MR
[14] D. Ramachandran, L. Ruschendorf, “A general duality theorem for marginal problems”, Prob. Theo. Relat. Fields, 101 (1995), 311–319 | DOI | MR | Zbl
[15] J. Sethuraman, “Some extensions of the Skorohod representation theorem”, Sankhya, 64 (2002), 884–893 | MR | Zbl
[16] A. V. Skorokhod, “Limit theorems for stochastic processes”, Theo. Probab. Appl., 1 (1956), 261–290 | DOI | MR
[17] H. Thorisson, “Coupling methods in probability theory”, Scand. J. Statist., 22 (1995), 159–182 | MR | Zbl
[18] H. Thorisson, Convergence in density in finite time windows and the Skorohod representation, arXiv: 1508.07838
[19] A. W Van der Vaart, J. A. Wellner, Weak convergence and empirical processes, Springer, New York, 1996 | MR | Zbl
[20] M. J. Wichura, “On the construction of almost uniformly convergent random variables with given weakly convergent image laws”, Ann. Math. Statist., 41 (1970), 284–291 | DOI | MR | Zbl