Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2015_20_1_a5, author = {A. V. Marynych}, title = {A note on convergence to stationarity of random processes with immigration}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {84--100}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_1_a5/} }
A. V. Marynych. A note on convergence to stationarity of random processes with immigration. Teoriâ slučajnyh processov, Tome 20 (2015) no. 1, pp. 84-100. http://geodesic.mathdoc.fr/item/THSP_2015_20_1_a5/
[1] Patrick Billingsley, Convergence of probability measures, John Wiley Sons, Inc., New York-London-Sydney, 1968 | MR
[2] Alexander Iksanov, Alexander Marynych, Matthias Meiners, “Asymptotics of random processes with immigration I: scaling limits”, Bernoulli, 2016 (to appear)
[3] Alexander Iksanov, Alexander Marynych, and Matthias Meiners, “Asymptotics of random processes with immigration {II}: convergence to stationarity”, Bernoulli, 2016 (to appear)
[4] Norman Kaplan, “Limit theorems for a {$GI/G/\infty $} queue”, Ann. Probability, 3:5 (1975), 780–789 | DOI | MR | Zbl
[5] Torgny Lindvall, “Weak convergence of probability measures and random functions in the function space {$D(0,\,\infty )$}”, J. Appl. Probability, 10 (1973), 109–121 | DOI | MR | Zbl
[6] Klaus Matthes, Johannes Kerstan, Joseph Mecke, Infinitely divisible point processes, Translated from the German by B. Simon, Wiley Series in Probability and Mathematical Statistics, John Wiley Sons, Chichester-New York-Brisbane, 1978 | MR | Zbl
[7] Mark M. Meerschaert, Peter Straka, “Semi-Markov approach to continuous time random walk limit processes”, Ann. Probab., 42:4 (2014), 1699–1723 | DOI | MR | Zbl
[8] Sidney Resnick, Adventures in stochastic processes, Birkhäuser Boston, Inc., Boston, MA, 1992 | MR | Zbl
[9] Karl Sigman, Stationary marked point processes, Stochastic Modeling Series, Chapman Hall, New York, 1995 | MR | Zbl
[10] Hermann Thorisson, Coupling, stationarity, and regeneration, Probability and its Applications, Springer-Verlag, New York, 2000 | MR | Zbl
[11] Ward Whitt, “Some useful functions for functional limit theorems”, Math. Oper. Res., 5:1 (1980), 67–85 | DOI | MR | Zbl
[12] Ward Whitt, Stochastic-process limits, Springer Series in Operations Research, Springer-Verlag, New York, 2002 | MR | Zbl