Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2015_20_1_a3, author = {E. V. Glinyanaya}, title = {Krylov--Veretennikov representation for the $m$-point motion of a discrete-time flow}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {63--77}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_1_a3/} }
E. V. Glinyanaya. Krylov--Veretennikov representation for the $m$-point motion of a discrete-time flow. Teoriâ slučajnyh processov, Tome 20 (2015) no. 1, pp. 63-77. http://geodesic.mathdoc.fr/item/THSP_2015_20_1_a3/
[1] T. E. Harris, “Coalescing and noncoalescing stochastic flows in $\mathbb{R}$”, Stoch. Process and Their Applic., 17 (1984), 187–210 | DOI | MR | Zbl
[2] I. I. Nishchenko, “Discrete time approximation of coalescing stochastic flows on the real line”, Theory of Stochastic Processes, 17(33):1 (2011), 70–78 | MR | Zbl
[3] E. V. Glinyanaya, “Discrete analogue of the Krylov–Veretennikov expansion”, Theory of Stochastic Processes, 17(33):1 (2011), 39–49 | MR | Zbl
[4] A. A. Dorogovtsev, “Krylov–Veretennikov expansion for coalescing stochastic flows”, Commun. Stoch. Anal., 6:3 (2006), 421–435 | MR
[5] D. Nualart, The Malliavin calculus and Related Topics, Springer, New York, 1995 | MR | Zbl
[6] A. A. Dorogovtsev, Stochastic Analysis and Random Maps in Hilbert space, VSP, Utrecht–Tokyo, 1994 | MR | Zbl
[7] A. A. Dorogovtsev, Measure-Valued Processes and Stochastic Flows, Institute of Math., Kiev, 2007 (in Russian) | MR | Zbl
[8] N. Krylov, A. Veretennikov, “Explicit formulas of the solutions of stochastic equations”, Math.Sb., 100(142):2 (1976), 266–284 | MR | Zbl
[9] S. Janson, Gaussian Hilbert spaces, Cambrige University press, Cambrige, 1997 | MR | Zbl
[10] G. A. Edgar, J. M. Rosenblatt, “Difference equations over locally compact abelian groups”, Trans. Amer. Math. Soc., 253 (1979), 273–289 | DOI | MR | Zbl
[11] K. Yosida, Functional analysis, Springer-Verlag, New York, N.Y, 1968 | MR
[12] P. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, Berlin–Heidelberg, 2005 | MR