Krylov--Veretennikov representation for the $m$-point motion of a discrete-time flow
Teoriâ slučajnyh processov, Tome 20 (2015) no. 1, pp. 63-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a discrete-time stochastic flow which can be regarded as an approximation to a flow of Brownian particles with interaction. For the $m$-point motion of such discrete-time flow we present a discrete analogue of Krylov-Veretennikov expansion.
Keywords: Random interaction systems, discrete-time flow, Ito-Wiener expansion.
@article{THSP_2015_20_1_a3,
     author = {E. V. Glinyanaya},
     title = {Krylov--Veretennikov representation for the $m$-point motion of a discrete-time flow},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {63--77},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_1_a3/}
}
TY  - JOUR
AU  - E. V. Glinyanaya
TI  - Krylov--Veretennikov representation for the $m$-point motion of a discrete-time flow
JO  - Teoriâ slučajnyh processov
PY  - 2015
SP  - 63
EP  - 77
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2015_20_1_a3/
LA  - en
ID  - THSP_2015_20_1_a3
ER  - 
%0 Journal Article
%A E. V. Glinyanaya
%T Krylov--Veretennikov representation for the $m$-point motion of a discrete-time flow
%J Teoriâ slučajnyh processov
%D 2015
%P 63-77
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2015_20_1_a3/
%G en
%F THSP_2015_20_1_a3
E. V. Glinyanaya. Krylov--Veretennikov representation for the $m$-point motion of a discrete-time flow. Teoriâ slučajnyh processov, Tome 20 (2015) no. 1, pp. 63-77. http://geodesic.mathdoc.fr/item/THSP_2015_20_1_a3/

[1] T. E. Harris, “Coalescing and noncoalescing stochastic flows in $\mathbb{R}$”, Stoch. Process and Their Applic., 17 (1984), 187–210 | DOI | MR | Zbl

[2] I. I. Nishchenko, “Discrete time approximation of coalescing stochastic flows on the real line”, Theory of Stochastic Processes, 17(33):1 (2011), 70–78 | MR | Zbl

[3] E. V. Glinyanaya, “Discrete analogue of the Krylov–Veretennikov expansion”, Theory of Stochastic Processes, 17(33):1 (2011), 39–49 | MR | Zbl

[4] A. A. Dorogovtsev, “Krylov–Veretennikov expansion for coalescing stochastic flows”, Commun. Stoch. Anal., 6:3 (2006), 421–435 | MR

[5] D. Nualart, The Malliavin calculus and Related Topics, Springer, New York, 1995 | MR | Zbl

[6] A. A. Dorogovtsev, Stochastic Analysis and Random Maps in Hilbert space, VSP, Utrecht–Tokyo, 1994 | MR | Zbl

[7] A. A. Dorogovtsev, Measure-Valued Processes and Stochastic Flows, Institute of Math., Kiev, 2007 (in Russian) | MR | Zbl

[8] N. Krylov, A. Veretennikov, “Explicit formulas of the solutions of stochastic equations”, Math.Sb., 100(142):2 (1976), 266–284 | MR | Zbl

[9] S. Janson, Gaussian Hilbert spaces, Cambrige University press, Cambrige, 1997 | MR | Zbl

[10] G. A. Edgar, J. M. Rosenblatt, “Difference equations over locally compact abelian groups”, Trans. Amer. Math. Soc., 253 (1979), 273–289 | DOI | MR | Zbl

[11] K. Yosida, Functional analysis, Springer-Verlag, New York, N.Y, 1968 | MR

[12] P. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, Berlin–Heidelberg, 2005 | MR