Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2015_20_1_a2, author = {Jean-S\'ebastien Giet and Pierre Vallois and Sophie Wantz-M\'ezi\`eres}, title = {The logistic {S.D.E.}}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {28--62}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2015_20_1_a2/} }
Jean-Sébastien Giet; Pierre Vallois; Sophie Wantz-Mézières. The logistic S.D.E.. Teoriâ slučajnyh processov, Tome 20 (2015) no. 1, pp. 28-62. http://geodesic.mathdoc.fr/item/THSP_2015_20_1_a2/
[1] M. Abramowitz, I. A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards. Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, D.C., 1964 | MR
[2] L. H. R. Alvarez, “On the option interpretation of rational harvesting planning”, J. Math. Biol., 40 (2000), 383–405 | DOI | MR | Zbl
[3] L. H. R. Alvarez, L. A. Shepp, “Optimal harvesting of stochastically fluctuating populations”, J. Math. Biol., 37 (1998), 155–177 | DOI | MR | Zbl
[4] T. Bastogne, R. Keinj, P. Vallois, “Multinomial model-based formulations of TCP and NTCP for radiotherapy treatment planning”, Journal of Theoretical Biology, 279 (2011), 55–62 | DOI
[5] T. Bastogne, R. Keinj, P. Vallois, “Multinomial model-based formulations of TCP and NTCP for radiotherapy treatment planning”, Journal of Theoretical Biology, 312 (2012), 76–86 | DOI | MR
[6] H. Bateman, Higher Transcendental Functions 1, MacGraw-Hill, 1953
[7] A. N. Borodin, P. Salminen, Handbook of Brownian motion - facts and formulae, Probability and its applications, Birkhauser Verlag, Basal, 1996 | MR | Zbl
[8] A. B. O. Daalhuis, Confluent hypergeometric function, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010
[9] C. Donati-Martin, R. Ghomrasni, M. Yor, “On certain Markov processes attached to exponential functionals of Brownian motion: application to Asian options”, Rev. Mat. Iberoam., 17 (2001), 179–193 | DOI | MR | Zbl
[10] H. Doss, “Liens entre équations différentielles stochastiques et ordinaires”, Ann. Inst. H. Poincaré Sect. B (N.S.), 13:2 (1977), 99–125 | MR | Zbl
[11] S. N. Ethier and T. G. Kurtz, Markov processes. Characterization and convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley Sons, Inc., New York, 1986 | DOI | MR | Zbl
[12] A. E. Erdélyi,, Higher transcendental functions, Bateman Manuscript Project, California Institute of Technology, v. l, Robert E. Krieger Publishing Company, Malabar, Florida, 1981, XXVI+302 pp., Based, in part, on notes left by Harry Bateman and compiled by the Staff of the Bateman Manuscript Project ; Repr. of the orig.: McGraw-Hill Book Company, Inc., New York, 1953 | MR
[13] M. W. Feldman, J. Roughgarden, “A population stationnary distribution and chance of extinction in a stochastic environment with remarks on the theory of species packing”, Theor. Pop. Biol., 7:2 (1975), 197–207 | DOI | MR | Zbl
[14] E. Freitag, R. Busam, Complex analysis, Universitext, second edition, Springer-Verlag, Berlin, 2009 | MR | Zbl
[15] G. F. Gause, The struggle for existence, first published in 1934, Hafner, New York, 1964
[16] I. S. Gradshteyn, I. M. Ryzhik, Tables of integrals, series and products, Academic Press, 1980
[17] K. Itô, Jr. McKean, Diffusion processes and their sample paths, Die Grundlehren der mathematischen Wissenschaften, 125, Second printing, corrected, Springer-Verlag, Berlin | MR | Zbl
[18] C. Ji, D. Jiang, N. Shi, D. O'Regan, “Existence, uniqueness, stochastic persistence and global stability of positive solutions of the logistic equation with random perturbation”, Math. Methods Appl. Sci., 30:1 (2007), 77–89 | DOI | MR | Zbl
[19] D. Jiang, N. Shi, “A note on nonautonomous logistic equation with random perturbation”, J. Math. Anal. Appl., 303:1 (2005), 164–172 | DOI | MR | Zbl
[20] D. Jiang, N. Shi, X. Li, “Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation”, J. Math. Anal. Appl., 340 (2008), 588–597 | DOI | MR | Zbl
[21] D. Jiang, B. X. Zhang, D. H. Wang, N. Z. Shi, “Existence, uniqueness and global attractivity of positive solutions and MLE of the parameters to the logistic equation with random perturbation”, Science in China Series A: Mathematics, 50:7 (2007), 977–986 | DOI | MR | Zbl
[22] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics, 113, second edition, Springer-Verlag, New York, 1991 | MR | Zbl
[23] R. J. Kryscio, C. Lefèvre, “On the extinction of the S-I-S stochastic logistic epidemic”, Journal of Applied Probability, 27 (1989), 685–694 | DOI | MR
[24] G. S. Laddle, D. D. Siljak, “Stability of multispecies communities in randomly varying environment”, J. Math. Biol., 2 (1975), 165–178 | DOI | MR
[25] N. N. Lebedev, Special functions and their applications, Revised edition, translated from the Russian and edited by Richard A. Silverman, Unabridged and corrected republication, Dover Publications Inc., New York, 1972 | MR | Zbl
[26] R. Levins, “The effect of random variations of different types on population growth”, Proc. Nat. Acad. Sci. USA, 62 (1969), 1061–1065 | DOI | MR
[27] A. J. Lotka, Elements of physical biology, Williams and Wilkins, Baltimore, 1925 | Zbl
[28] X. Mao, G. Marion, E. Renshaw, “Environmental Brownian noise suppresses explosions in population dynamics”, Stoch. Proc. Appl., 97:1 (2002), 95–110 | DOI | MR | Zbl
[29] R. M. May, “Stability in Randomly Fluctuating Versus Deterministic Environments”, Amer. Naturalist, 107:957 (1973), 621–650 | DOI
[30] R. H. Norden, “On the distribution of the time of extinction in the stochastic logistic population model”, Adv. Appl. Prob., 14:4 (1982), 687–708 | DOI | MR | Zbl
[31] J. R. Norris, Markov chains, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[32] S. Pasquali, “The stochastic logistic equation: stationary solutions and their stability”, Rend. Sem. Mat. Univ. Padova, 106 (2001), 165–183 | MR | Zbl
[33] R. Pearl, L. J. Reed, “On the rate of growth of the Population of the United States since 1790 and its Mathematical Representation”, Proceedings of the National Academy of Sciences of the United States of America, 6:6 (1920), 275–288 | DOI
[34] E. C. Pielou, An introductory to mathematical ecology, Wiley-Interscience, New York, 1975 | MR
[35] H. Schurz, “Modeling, analysis and discretization of stochastic logistic equations”, Intern. Journal of Numerical Analysis and Modeling, 4 (2007), 178–197 | MR | Zbl
[36] M. Turelli, “Random Environments and Stochastic Calculus”, Theoretical Population Biol., 12 (1977), 140–178 | DOI | MR | Zbl
[37] M. Turelli, “A Reexamination of Stability in Randomly Varying versus Deterministic Environments with Comments on the Stochastic Theory of Limiting Similarity”, Theoretical Population Biol., 13 (1978), 244–267 | DOI | MR | Zbl
[38] A. Singh, J. P. Hespanha, “A derivative matching approach to moment closure for the stochastic logistic model”, Bulletin of Mathematical Biology, 69 (2007), 1909–1925 | DOI | MR | Zbl
[39] W. Y. Tan, S. Piantadosi, “On stochastic growth processes with application to stochastic logistic growth”, Statistica Sinica, 1 (1991), 527–540 | MR | Zbl
[40] P. F. Verhulst, “Notice sur la loi que la population suit dans son accroissement”, Correspondance mathématique et physique, 10 (1838), 113–121
[41] V. Voltera, “Variations and fluctuations of the number of individuals in animal species living together”, Journal du Conseil, 3 (1928), 1–51
[42] G. C. Wake, S. D. Watt, “The relaxation of May's conjecture for the logistic equation”, Appl. Math. Lett., 9:5 (1996), 59–62 | DOI | MR | Zbl
[43] D. V. Widder, The Laplace Transform, Princeton Mathematical Series, 6, Princeton University Press, Princeton, N. J., 1941 | MR | Zbl