Radonifying operators and infinitely divisible Wiener integrals
Teoriâ slučajnyh processov, Tome 19 (2014) no. 2, pp. 90-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we illustrate the relation between the existence of Wiener integrals with respect to a Lévy process in a separable Banach space and radonifying operators. For this purpose, we introduce the class of $\vartheta$-radonifying operators, i.e. operators which map a cylindrical measure $\vartheta$ to a genuine Radon measure. We study this class of operators for various examples of infinitely divisible cylindrical measures $\vartheta$ and highlight the differences from the Gaussian case.
Keywords: Cylindrical measures, infinitely divisible, stochastic integrals, reproducing kernel Hilbert space.
@article{THSP_2014_19_2_a6,
     author = {Markus Riedle},
     title = {Radonifying operators and infinitely divisible {Wiener} integrals},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {90--103},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a6/}
}
TY  - JOUR
AU  - Markus Riedle
TI  - Radonifying operators and infinitely divisible Wiener integrals
JO  - Teoriâ slučajnyh processov
PY  - 2014
SP  - 90
EP  - 103
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a6/
LA  - en
ID  - THSP_2014_19_2_a6
ER  - 
%0 Journal Article
%A Markus Riedle
%T Radonifying operators and infinitely divisible Wiener integrals
%J Teoriâ slučajnyh processov
%D 2014
%P 90-103
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a6/
%G en
%F THSP_2014_19_2_a6
Markus Riedle. Radonifying operators and infinitely divisible Wiener integrals. Teoriâ slučajnyh processov, Tome 19 (2014) no. 2, pp. 90-103. http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a6/

[1] D. Applebaum, M. Riedle, “Cylindrical Lévy processes in Banach spaces”, Proc. of Lond. Math. Soc., 101:3 (2010), 697–726 | DOI | MR | Zbl

[2] A. Bensoussan, Filtrage optimal des systèmes linéaires, Methodes mathematiques de l'informatique, 3, Dunod, Paris, 1971 | Zbl

[3] V. I. Bogachev, Gaussian measures, American Mathematical Society, Providence, RI, 1998 | MR | Zbl

[4] V. I. Bogachev, Measure theory, v. I, II, Springer, Berlin, 2007 | MR | Zbl

[5] Z. Brzeźniak, J. M. A.Ṁ. van Neerven, “Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem”, Stud. Math., 143:1 (2000), 43–74 | MR | Zbl

[6] R. A. Carmona, M. R. Tehranchi, Interest rate models: an infinite dimensional stochastic analysis perspective, Springer, Berlin, 2006 | MR | Zbl

[7] A. {de Acosta}, “Stable measures and seminorms”, Ann. Probab., 3:5 (1975), 865–875 | DOI | MR

[8] I. M. Gel'fand, “Generalized random processes”, Dokl. Akad. Nauk SSSR (N.S.), 100 (1955), 853–856 | MR | Zbl

[9] E. {Giné}, M. G. {Hahn}, “On stability of probability laws with univariate stable marginals”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 64 (1983), 157–165 | DOI | MR | Zbl

[10] L. {Gross}, “Abstract Wiener spaces”, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability, Part 1, v. 2, Contributions to Probability Theory, Univ. Calif. Press, 1967, 31–42 | MR | Zbl

[11] S. {Kwapień}, “On a theorem of L. Schwartz and its applications to absolutely summing operators”, Stud. Math., 38 (1970), 193–201 | MR | Zbl

[12] W. V. {Li}, W. {Linde}, “Approximation, metric entropy and small ball estimates for Gaussian measures”, Ann. Probab., 27 (1999), 1556–1578 | DOI | MR | Zbl

[13] W. Linde, Infinitely divisible and stable measures on Banach spaces, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1983 | MR | Zbl

[14] D. J. {Marcus}, “Non-stable laws with all projections stable”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 64 (1983), 139–156 | DOI | MR | Zbl

[15] R. C. Merton, “Option pricing when underlying stock returns are discontinuous”, Journal of Financial Economics, 3 (1976), 125–144 | DOI | Zbl

[16] M. {Métivier}, J. {Pellaumail}, Stochastic integration, Academic Press, New York, 1980 | MR | Zbl

[17] M. {Riedle}, “Infinitely divisible cylindrical measures on Banach spaces”, Stud. Math., 207 (2011), 235–256 | DOI | MR | Zbl

[18] M. Riedle, “Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 17 (2014) | DOI | MR | Zbl

[19] M. Riedle, “Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes”, Potential Analysis, 2015 | MR

[20] M. Riedle, O. van Gaans, “Stochastic integration for Lévy processes with values in Banach spaces”, Stochastic Processes Appl., 119 (2009), 1952–1974 | DOI | MR | Zbl

[21] J. {Rosiński}, Bilinear random integrals, Diss. Math., 259, 1987 | MR | Zbl

[22] L. Schwartz, “Un théorème de dualité pour les applications radonifiantes”, C. R. Acad. Sci., Paris, Sér. A, 268 (1969), 1410–1413 | MR | Zbl

[23] I. E. {Segal}, “Tensor algebras over Hilbert spaces. I”, Trans. Am. Math. Soc., 81 (1956), 106–134 | DOI | MR | Zbl

[24] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Probability Distributions on Banach spaces, D. Reidel Publishing Company, Dordrecht, 1987 | MR | Zbl

[25] J. M. A. M. {van Neerven}, “$\gamma$-radonifying operators – a survey”, The AMSI-ANU workshop on spectral theory and harmonic analysis, Proceedings of the workshop (Canberra, Australia, July 13–17, 2009), Australian National University, Centre for Mathematics and its Applications, Canberra, 2010, 1–61 | MR | Zbl

[26] J. M. A. M. {van Neerven}, M. C. {Veraar}, L. {Weis}, “Stochastic integration in UMD Banach spaces”, Ann. Probab., 35 (2007), 1438–1478 | DOI | MR | Zbl

[27] J. M. A. M. {van Neerven}, L. Weis, “Stochastic integration of functions with values in a Banach space”, Stud. Math., 166 (2005), 131–170 | DOI | MR | Zbl