Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2014_19_2_a5, author = {G. V. Riabov}, title = {It\^o-Wiener expansion for functionals of the {Arratia's} flow n-point motion}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {64--89}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a5/} }
G. V. Riabov. It\^o-Wiener expansion for functionals of the Arratia's flow n-point motion. Teoriâ slučajnyh processov, Tome 19 (2014) no. 2, pp. 64-89. http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a5/
[1] A. A. Dorogovtsev, G. V. Riabov, “Transformations of Wiener Measure and Orthogonal Expansions”, Journal of Theoretical Probability (to appear)
[2] R. A. Arratia, Coalescing Brownian motions on the line, PhD Thesis, University of Wisconsin, Madison, 1979 | MR
[3] Y. Le Jan, O. Raimond, “Flows, coalescence and noise”, Ann. Probab., 32:2 (2004), 1247–1315 | DOI | MR | Zbl
[4] A. Ju. Veretennikov, N. V. Krylov, “Explicit formulae for the solutions of stochastic equations”, Mat. Sb., 100:2 (1976), 266–284 (in Russian) | MR | Zbl
[5] B. S. Tsirelson, “Nonclassical stochastic flows and continuous products”, Probab. Surv., 1 (2004), 173–298 | DOI | MR | Zbl
[6] A. A. Dorogovtsev, “A stochastic integral with respect to the Arratia flow”, Dokl. Akad. Nauk, 410:2 (2006), 156–157 (in Russian) | MR | Zbl
[7] A. A. Dorogovtsev, “One version of the Clark representation theorem for Arratia flows”, Theory Stoch. Process., 11:3–4 (2005), 63–70 | MR | Zbl
[8] T. V. Malovichko, “Girsanov's theorem for stochastic flows with interaction”, Ukrainian Math. J., 61:3 (2009), 435–456 | DOI | MR | Zbl
[9] A. A. Dorogovtsev, “The Fourier-Wiener transform of functionals from an Arratia flow”, Ukr. Math. Bull., 4:3 (2007), 329–350 | MR
[10] A. A. Dorogovtsev, Measure-valued processes and stochastic flows, Proceedings of Institute of Mathematics of NAS of Ukraine. Mathematics and its Applications, 66, National Academy of Sciences of Ukraine, Institute of Mathematics, Kyiv, 2007 (in Russian) | MR | Zbl
[11] K. Itô, “Multiple Wiener integral”, J. Math. Soc. Japan, 3 (1951), 157–169 | DOI | MR | Zbl
[12] R. H. Cameron, W. T. Martin, “The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals”, Ann. of Math., 2 (1947), 385–392 | DOI | MR | Zbl
[13] A. A. Dorogovtsev, “Conditioning of Gaussian functionals and orthogonal expansion”, Theory Stoch. Process., 13:3 (2007), 29–37 | MR | Zbl
[14] D. Revuz, M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften, 293, Third edition, Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl
[15] M. Ondreját, J. Seidler, “On existence of progressively measurable modifications”, Electron. Commun. Probab., 18:20 (2013), 6 pp. | MR | Zbl
[16] A. A. Dorogovtsev, “One Brownian stochastic flow”, Theory Stoch. Process., 10:3–4 (2004), 21–25 | MR | Zbl
[17] E. B. Dynkin, Markov processes, v. I, Grundlehren der Mathematischen Wissenschaften, 121, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965 | MR
[18] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955 | MR | Zbl
[19] D. W. Stroock, Partial Differential Equations for Probabilists, Cambridge Studies in Advanced Mathematics, 112, Cambridge University Press, Cambridge, 2008 | MR | Zbl
[20] R. S. Liptser, A. N. Shiryaev, Statistics of random processes, v. I, Applications of Mathematics. Stochastic Modelling and Applied Probability, General theory, Second edition, Springer-Verlag, Berlin, 2001 | DOI
[21] E. P. Hsu, “Brownian exit distribution of a ball”, Seminar on stochastic processes, Progr. Probab. Statist., 12, Birkhäuser Boston, Boston, MA, 1986, 108–-116 | MR
[22] M. G. Garroni, J. -L. Menaldi, Green functions for second order parabolic integro-differential problems, Longman Scientific Technical, Harlow, 1992 | MR | Zbl
[23] D. E. Edmunds, W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1987 | MR
[24] V. I. Bogachev, Measure theory, v. II, Springer-Verlag, Berlin, 2007 | MR | Zbl
[25] D. W. Stroock, Probability theory. An analytic view, Second edition, Cambridge University Press, Cambridge, 2011 | MR | Zbl