Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2014_19_2_a3, author = {M. M. Osypchuk and M. I. Portenko}, title = {One type of singular perturbations of a~multidimensional stable process}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {42--51}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a3/} }
TY - JOUR AU - M. M. Osypchuk AU - M. I. Portenko TI - One type of singular perturbations of a~multidimensional stable process JO - Teoriâ slučajnyh processov PY - 2014 SP - 42 EP - 51 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a3/ LA - en ID - THSP_2014_19_2_a3 ER -
M. M. Osypchuk; M. I. Portenko. One type of singular perturbations of a~multidimensional stable process. Teoriâ slučajnyh processov, Tome 19 (2014) no. 2, pp. 42-51. http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a3/
[1] R. M. Blumenthal, R. K. Getoor, “Some theorems on stable processes”, Transactions of the American Mathematical Society, 93:2 (1960), 263–273 | DOI | MR
[2] S. Bochner, Lectures on Fourier integrals, Princeton University Press, 1959 | MR | Zbl
[3] K. Bogdan, T. Jakubowski, “Estimates of heat kernel of fractional Laplacian perturbed by gradient operators”, Commun. Math. Phys., 271 (2007), 179–198 | DOI | MR | Zbl
[4] S. D. Eidelman, S. D. Ivasyshen, A. N. Kochubei, Analytic methods in the theory of differential and pseudo-differential equations of parabolic type, Operator Theory Advances and Applications, 152, Birkhäuser Verlag, 2004 | MR | Zbl
[5] N. Jacob, “A class of Feller semigroups generated by pseudodifferential operators”, Mathematische Zeitschrift, 215 (1994), 151–166 | DOI | MR | Zbl
[6] J. M. Harrison, L. A. Shepp, “On skew Brownian motion”, Annals of Probability, 89 (1981), 309–313 | DOI | MR
[7] V. Knopova, A. Kulik, The parametrix method and the weak solution to an SDE driven by an $\alpha$-stable noise, arXiv: 1412.8732
[8] T. Komatsu, “On the martingale problem for generators of stable processes with perturbations”, Osaka Journal Math., 21:1 (1984), 113–132 | MR | Zbl
[9] V. P. Kurenok, “A note on $L_2$-estimates for stable integrals with drift”, Transactions of the American Mathematical Society, 300:2 (2008), 925–938 | DOI | MR
[10] J. V. Loebus, M. I. Portenko, “On one class of perturbations of the generators of a stable process”, Theory of Probability and Mathematical Statistics, 52 (1995), 102–111 | Zbl
[11] S. I. Podolynny, N. I. Portenko, “On multidimensional stable processes with locally unbounded drift”, Random Oper. and Stoch. Equ., 3:2 (1995), 113–124 | DOI | MR | Zbl
[12] N. I. Portenko, “Some perturbations of drift-type for symmetric stable processes”, Random Oper. and Stoch. Equ., 2:3 (1994), 211–224 | DOI | MR | Zbl
[13] N. I. Portenko, Generalized diffusion processes, Translations of Mathematical Monographs, 83, American Mathematical Society, 1990 | MR | Zbl
[14] H. Tanaka, M. Tsuchiya, S. Watanabe, “Perturbation of drift-type for Levi processes”, Journal Math. Kyoto University, 14:1 (1974), 73–92 | MR | Zbl