One type of singular perturbations of a~multidimensional stable process
Teoriâ slučajnyh processov, Tome 19 (2014) no. 2, pp. 42-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

A semigroup of linear operators on the space of all continuous bounded functions given on a $d$-dimensional Euclidean space $\mathbb{R}^d$ is constructed such that its generator can be written in the following form $$ \mathbf{A}+q(x)\delta_S(x)\mathbf{B}_\nu, $$ where $\mathbf{A}$ is the generator of a symmetric stable process in $\mathbb{R}^d$ (that is, a pseudo-differential operator whose symbol is given by $(-c|\xi|^\alpha)_{\xi\in\mathbb{R}^d}$, parameters $c>0$ and $\alpha\in(1,2]$ are fixed); $\mathbf{B}_\nu$ is the operator with the symbol $(2ic|\xi|^{\alpha-2}(\xi,\nu))_{\xi\in\mathbb{R}^d}$ ($i=\sqrt{-1}$ and $\nu\in\mathbb{R}^d$ is a fixed unit vector); $S$ is a hyperplane in $\mathbb{R}^d$ that is orthogonal to $\nu$; $(\delta_S(x))_{x\in\mathbb{R}^d}$ is a generalized function whose action on a test function consists in integrating the latter one over $S$ (with respect to Lebesgue measure on $S$); and $(q(x))_{x\in S}$ is a given bounded continuous function with real values. This semigroup is generated by some kernel that can be given by an explicit formula. However, there is no Markov process in $\mathbb{R}^d$ corresponding to this semigroup because it does not preserve the property of a function to take on only non-negative values.
Keywords: Markov process, Wiener process, symmetric stable process, pseudo-differential operator, pseudo-differential equation, semigroup of operators, transition probability density.
Mots-clés : singular perturbation
@article{THSP_2014_19_2_a3,
     author = {M. M. Osypchuk and M. I. Portenko},
     title = {One type of singular perturbations of a~multidimensional stable process},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {42--51},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a3/}
}
TY  - JOUR
AU  - M. M. Osypchuk
AU  - M. I. Portenko
TI  - One type of singular perturbations of a~multidimensional stable process
JO  - Teoriâ slučajnyh processov
PY  - 2014
SP  - 42
EP  - 51
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a3/
LA  - en
ID  - THSP_2014_19_2_a3
ER  - 
%0 Journal Article
%A M. M. Osypchuk
%A M. I. Portenko
%T One type of singular perturbations of a~multidimensional stable process
%J Teoriâ slučajnyh processov
%D 2014
%P 42-51
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a3/
%G en
%F THSP_2014_19_2_a3
M. M. Osypchuk; M. I. Portenko. One type of singular perturbations of a~multidimensional stable process. Teoriâ slučajnyh processov, Tome 19 (2014) no. 2, pp. 42-51. http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a3/

[1] R. M. Blumenthal, R. K. Getoor, “Some theorems on stable processes”, Transactions of the American Mathematical Society, 93:2 (1960), 263–273 | DOI | MR

[2] S. Bochner, Lectures on Fourier integrals, Princeton University Press, 1959 | MR | Zbl

[3] K. Bogdan, T. Jakubowski, “Estimates of heat kernel of fractional Laplacian perturbed by gradient operators”, Commun. Math. Phys., 271 (2007), 179–198 | DOI | MR | Zbl

[4] S. D. Eidelman, S. D. Ivasyshen, A. N. Kochubei, Analytic methods in the theory of differential and pseudo-differential equations of parabolic type, Operator Theory Advances and Applications, 152, Birkhäuser Verlag, 2004 | MR | Zbl

[5] N. Jacob, “A class of Feller semigroups generated by pseudodifferential operators”, Mathematische Zeitschrift, 215 (1994), 151–166 | DOI | MR | Zbl

[6] J. M. Harrison, L. A. Shepp, “On skew Brownian motion”, Annals of Probability, 89 (1981), 309–313 | DOI | MR

[7] V. Knopova, A. Kulik, The parametrix method and the weak solution to an SDE driven by an $\alpha$-stable noise, arXiv: 1412.8732

[8] T. Komatsu, “On the martingale problem for generators of stable processes with perturbations”, Osaka Journal Math., 21:1 (1984), 113–132 | MR | Zbl

[9] V. P. Kurenok, “A note on $L_2$-estimates for stable integrals with drift”, Transactions of the American Mathematical Society, 300:2 (2008), 925–938 | DOI | MR

[10] J. V. Loebus, M. I. Portenko, “On one class of perturbations of the generators of a stable process”, Theory of Probability and Mathematical Statistics, 52 (1995), 102–111 | Zbl

[11] S. I. Podolynny, N. I. Portenko, “On multidimensional stable processes with locally unbounded drift”, Random Oper. and Stoch. Equ., 3:2 (1995), 113–124 | DOI | MR | Zbl

[12] N. I. Portenko, “Some perturbations of drift-type for symmetric stable processes”, Random Oper. and Stoch. Equ., 2:3 (1994), 211–224 | DOI | MR | Zbl

[13] N. I. Portenko, Generalized diffusion processes, Translations of Mathematical Monographs, 83, American Mathematical Society, 1990 | MR | Zbl

[14] H. Tanaka, M. Tsuchiya, S. Watanabe, “Perturbation of drift-type for Levi processes”, Journal Math. Kyoto University, 14:1 (1974), 73–92 | MR | Zbl