Geometric entropy in Banach spaces
Teoriâ slučajnyh processov, Tome 19 (2014) no. 2, pp. 10-30

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce and study two notions of entropy in a Banach space $X$ with a normalized Schauder basis $\mathcal B = (e_n)$. The geometric entropy $\mathbf{E}(A)$ of a subset $A$ of $X$ is defined to be the infimum of radii of compact bricks containing $A$, where a brick $K_{\mathcal B, \mathcal E}$ is the set of all sums of convergent series $\sum a_n e_n$ with $|a_n| \leq \varepsilon_n$, $\mathcal E = (\varepsilon_n)$, $\varepsilon_n \geq 0$. The unconditional entropy $\mathbf{E}_0(A)$ is defined similarly, with respect to $1$-unconditional bases of $X$. We obtain several compactness characterizations for bricks (Theorem 3.7) useful for main results. If $X = c_0$ then the two entropies of a set coincide, and equal the radius of a set. However, for $X = \ell_2$ the entropies are distinct. The unconditional entropy of the image $T(B_H)$ of the unit ball of a separable Hilbert space $H$ under an operator $T$ is finite if and only if $T$ is a Hilbert-Schmidt operator, and moreover, $\mathbf{E}_0 \bigl(T(B_H)\bigr) = \|T\|_{HS}$, the Hilbert-Schmidt norm of $T$. We also obtain sufficient conditions on a set in a Hilbert space to have finite unconditional entropy. For Banach spaces without a Schauder basis we offer another entropy, called the Auerbach entropy. Finally, we pose some open problems.
Keywords: Geometric entropy in Banach spaces, distributions in Banach spaces, precompact sets, compact bricks
Mots-clés : Schauder bases.
@article{THSP_2014_19_2_a1,
     author = {Andrey Dorogovtsev and Mikhail Popov},
     title = {Geometric entropy in {Banach} spaces},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {10--30},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a1/}
}
TY  - JOUR
AU  - Andrey Dorogovtsev
AU  - Mikhail Popov
TI  - Geometric entropy in Banach spaces
JO  - Teoriâ slučajnyh processov
PY  - 2014
SP  - 10
EP  - 30
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a1/
LA  - en
ID  - THSP_2014_19_2_a1
ER  - 
%0 Journal Article
%A Andrey Dorogovtsev
%A Mikhail Popov
%T Geometric entropy in Banach spaces
%J Teoriâ slučajnyh processov
%D 2014
%P 10-30
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a1/
%G en
%F THSP_2014_19_2_a1
Andrey Dorogovtsev; Mikhail Popov. Geometric entropy in Banach spaces. Teoriâ slučajnyh processov, Tome 19 (2014) no. 2, pp. 10-30. http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a1/