Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2014_19_2_a1, author = {Andrey Dorogovtsev and Mikhail Popov}, title = {Geometric entropy in {Banach} spaces}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {10--30}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a1/} }
Andrey Dorogovtsev; Mikhail Popov. Geometric entropy in Banach spaces. Teoriâ slučajnyh processov, Tome 19 (2014) no. 2, pp. 10-30. http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a1/
[1] F. Albiac, N. Kalton, Topics in Banach Space Theory, Graduate Texts in Math., 233, Springer, New York, 2006 | MR
[2] A. V. Balakrishnan, Applied Functional Analysis, Springer–Verlag, Berlin–Heidelberg–New York, 1976 | MR | Zbl
[3] S. M. Berman, “Local nondeterminism and local times of Gaussian processes”, Bull. Amer. Math. Soc., 79 (1973), 475–477 | DOI | MR | Zbl
[4] J. Bobok and H. Bruin, “The topological entropy of Banach spaces”, J. Difference Equ. Appl., 18:4 (2012), 569–578 | DOI | MR | Zbl
[5] V. I. Bogachev, Gaussian measures, Math. Surv. and Monographs, 62, 1998 | DOI | MR | Zbl
[6] B. Carl, I. Kyrezi, A. Pajor, “Metric entropy of convex hulls in Banach spaces”, J. London Math. Soc., 60:3 (1999), 871–896 | DOI | MR | Zbl
[7] Sb. Math., 201:5-6, 645–653 | DOI | MR | Zbl
[8] Ukrainian Math. J., 57:9 (2005), 1424–1441 | DOI | MR | Zbl
[9] W. B. Johnson, H. P. Rosenthal, M. Zippin, “On bases, finite-dimensional decompositions and weaker structures in Banach spaces”, Isr. J. Math., 9 (1971), 488–506 | DOI | MR | Zbl
[10] M. I. Kadets, V. M. Kadets, Series in Banach spaces. Conditional and unconditional convergence, Operator Theory Advances and Applications, 94, Birkhäuser, Basel-Boston-Berlin, 1997 | MR | Zbl
[11] V. M. Kadets, A course of Functional Analysis and Measure Theory, Chyslo (Published by I. E. Chyzhykov), Lviv, 2012 (in Ukrainian)
[12] D. Kerr, H. Li, “Dynamical entropy in Banach spaces”, Invent. Math., 162:3 (2005), 649–686 | DOI | MR | Zbl
[13] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, v. 1, Sequence spaces, Springer–Verlag, Berlin–Heidelberg–New York, 1977 | MR | Zbl
[14] M. B. Marcus, J. Rosen, Markov processes, Gaussian processes and local times, Cambridge Univ. Press, 2006 | MR | Zbl
[15] M. Martín, J. Merí, M. Popov, “On the numerical radius of operators in Lebesgue spaces”, J. Funct. Anal., 261 (2011), 149–168 | DOI | MR | Zbl
[16] B. Simon, The $P(\phi)_2$ Euclidean (quantum) field theory, Princeton Series in Physics, Princeton University Press, Princeton, N.J., 1974 | MR
[17] I. Singer, Bases in Banach Spaces, v. II, Springer-Verlag, Berlin-Heidelberg-New York, 1981 | MR | Zbl
[18] V. N. Sudakov, “A class of compacta of a Hilbert space”, Uspekhi Mat. Nauk, 18:1 (1963), 181-187 (in Russian) | MR | Zbl
[19] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Probability distributions in Banach spaces, Nauka, Moscow, 1985 (in Russian) | MR | Zbl