Erd\"os-R\'enyi law for the local time of the hybrid process
Teoriâ slučajnyh processov, Tome 19 (2014) no. 2, pp. 1-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

Our aim in this paper is to study the Erdös-Rényi law for the local time of the hybrid of empirical and partial sums process. The corresponding local time can be see as a modified version of the local time of the symmetric random walk by introducing a time $t$ and a sequence of independent with the same distribution random variables $X_i$'s, independent of the random walk.
Keywords: Erdös-Rényi law, Symmetric random walk, Hybrids of the empirical and partial sums processes, Local time.
Mots-clés : Poisson process
@article{THSP_2014_19_2_a0,
     author = {S. Alvarez-Andrade},
     title = {Erd\"os-R\'enyi law for the local time of the hybrid process},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a0/}
}
TY  - JOUR
AU  - S. Alvarez-Andrade
TI  - Erd\"os-R\'enyi law for the local time of the hybrid process
JO  - Teoriâ slučajnyh processov
PY  - 2014
SP  - 1
EP  - 9
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a0/
LA  - en
ID  - THSP_2014_19_2_a0
ER  - 
%0 Journal Article
%A S. Alvarez-Andrade
%T Erd\"os-R\'enyi law for the local time of the hybrid process
%J Teoriâ slučajnyh processov
%D 2014
%P 1-9
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a0/
%G en
%F THSP_2014_19_2_a0
S. Alvarez-Andrade. Erd\"os-R\'enyi law for the local time of the hybrid process. Teoriâ slučajnyh processov, Tome 19 (2014) no. 2, pp. 1-9. http://geodesic.mathdoc.fr/item/THSP_2014_19_2_a0/

[1] S. Alvarez-Andrade and S. Bouzebda, “Asymptotic results for hybrids of empirical and partial sums processes”, Statist. Papers, 55 (2014) (to appear) | DOI | MR | Zbl

[2] S. Alvarez-Andrade, “On the complete convergence for the hybrid process”, Comm. Statist. Theory and Methods, 2014 (to appear) | MR

[3] S. Alvarez-Andrade, “Some asymptotic properties of the hybrids of empirical and partial-sum processes”, Rev. Mat. Iberoamericana, 24:1 (2008), 31–41 | DOI | MR | Zbl

[4] S. Alvarez-Andrade, “Accroissements de type Erdös-Rényi du processus de renouvellement cumulé”, Stoch. Stoch. Reports, 44 (1993), 123–129 | DOI | MR | Zbl

[5] J. N. Bacro, P. Deheuvels, J. Steinebach, “Exact convergence rates in Erdös-Rényi type theorems for renewal processes”, Ann. Inst. H. Poincaré Probab. Statist., 23:2 (1987), 195–207 | MR | Zbl

[6] X. Chen, Random Walk Intersections: large deviations and related topics, Mathematical surveys and monographs, 157, American Math. Society, 2010 | DOI | MR

[7] E. Csáki, A. Földes, How big are the increments of the local time of a simple symmetric random walk? , Coll. Mathematica Soc. J. Bolyai, 36 (1982), 199–221 | MR

[8] E. Csáki, A. Földes, How big are the increments of the local time of a recurrent random walk? , Z. Wahrscheinlichkeitstheorie verw. Gebiete, 65:2 (1983), 307–322 | DOI | MR | Zbl

[9] S. Csörg{ő}, “Erdös-Rényi laws”, Ann. Statist., 7:4 (1979), 772–787 | DOI | MR | Zbl

[10] M. Csörg{ő}, L. Horváth, P. Kokoszka, “Approximation for bootstrapped empirical processes”, Proc. Amer. Math. Soc., 128:8 (2000), 2457–2464 | DOI | MR

[11] M. Csörg{ő}, J. Steinebach, “Improved Erdös-Rényi and strong approximation laws for increments of partial sums”, Ann. Probab., 9:6 (1981), 988–996 | DOI | MR

[12] D. Diebolt, “A nonparametric test for the regression function: Asymptotic theory”, J. Statist. Plann. Inference, 44:1 (1995), 1–17 | DOI | MR | Zbl

[13] P. Deheuvels, “Functional Erdös-Rényi laws”, Studia Sci. Math. Hungar., 26:2-3 (1991), 261–295 | MR | Zbl

[14] A. N. Frolov, “The Erdös-Rényi law for renewal processes”, Theor. Probability and Math. Statist., 68 (2004), 157-166 | DOI | MR

[15] L. Horváth, J. Steinebach, “On the best approximation for bootstrapped empirical processes”, Statist. Probab. Letters., 41:2 (1999), 117–122 | DOI | MR | Zbl

[16] L. Horváth, “Approximations for hybrids of empirical and partial sums processes”, J. Statist. Plann. Inference, 88:1 (2000), 1–18 | DOI | MR | Zbl

[17] L. Horváth, P. Kokoszka, J. Steinebach, “Approximations for weighted bootstrap processes with an application”, Statist. Probab. Lett., 48:1 (2000), 59–70 | DOI | MR | Zbl

[18] P. Révész, Local time and invariance, Lecture Notes in Math., 861, Springer, Berlin-New York, 1981 | MR

[19] P. Révész, Random Walk in Random and Non-Random Environments, World Scientific, 1990 | MR | Zbl

[20] J. Steinebach, “A strong law of Erdös-Rényi typer for cumulative processes in renewal theory”, J. Appl. Probab., 15:1 (1978), 96–111 | DOI | MR | Zbl

[21] J. Steinebach, Large deviation probabilities and some related topics, Carleton-Ottawa lecture notes, 28, 1980 | Zbl

[22] J. Steinebach, “On general versions of Erdös-Rényi laws”, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 56:4 (1981), 549–554 | DOI | MR | Zbl

[23] J. Steinebach, “Between invariance principles and Erdös-Rényi laws”, Limit Theorems in Probability and Statistics, ed. Pal Révész, North Holland, 1982, 981–1005 | MR