Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2014_19_1_a6, author = {A. V. Rudenko}, title = {Some uniform estimates for the transition density of a {Brownian} motion on a {Carnot} group and their application to local times}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {62--90}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a6/} }
TY - JOUR AU - A. V. Rudenko TI - Some uniform estimates for the transition density of a Brownian motion on a Carnot group and their application to local times JO - Teoriâ slučajnyh processov PY - 2014 SP - 62 EP - 90 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a6/ LA - en ID - THSP_2014_19_1_a6 ER -
%0 Journal Article %A A. V. Rudenko %T Some uniform estimates for the transition density of a Brownian motion on a Carnot group and their application to local times %J Teoriâ slučajnyh processov %D 2014 %P 62-90 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a6/ %G en %F THSP_2014_19_1_a6
A. V. Rudenko. Some uniform estimates for the transition density of a Brownian motion on a Carnot group and their application to local times. Teoriâ slučajnyh processov, Tome 19 (2014) no. 1, pp. 62-90. http://geodesic.mathdoc.fr/item/THSP_2014_19_1_a6/
[1] F. Baudoin, An introduction to the geometry of stochastic flows, Imperial College Press, London, 2004 | MR | Zbl
[2] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007 | MR | Zbl
[3] A. A. Dorogovtsev, V. V. Bakun, “Random mappings and a generalized additive functional of a Wiener process”, Theory of Prob. and its Appl., 48:1 (2003) | MR | Zbl
[4] A. Dvoretzky, P. Erdös, S. Kakutani, “Multiple points of paths of Brownian motion in the plane”, Bull. Res. Council Israel, 3 (1954), 364–371 | MR
[5] G. B. Folland, Elias M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton University Press, Princeton, N.J., 1982 | MR | Zbl
[6] Lars Hörmander, Anders Melin, “Free systems of vector fields”, Ark. Mat., 16:1 (1978), 83–88 | MR | Zbl
[7] P. Imkeller, V. Perez-Abreu, J. Vives, “Chaos expansions of double intersection local time of Brownian motion in {$R^d$} and renormalization”, Stoch. Proc. and Appl., 56 (1995), 1–34 | DOI | MR | Zbl
[8] Kiyosi Itô, “Brownian motions in a Lie group”, Proc. Japan Acad., 26:8 (1950), 4–10 | DOI | MR | Zbl
[9] O. Kallenberg, Foundations of modern probability, Probability and its applications, Springer, New York, 2002, 638 pp. | DOI | MR | Zbl
[10] Jean-Francois Le Gall, “Wiener sausage and self-intersection local times”, Journal of Functional Analysis, 88 (1990), 299–341 | DOI | MR | Zbl
[11] J. Rosen, “A renormalized local time for multiple intersections of planar Brownian motion”, Seminaire de Probabilities XX, 20, 1986, 515–531 | MR
[12] Linda Preiss Rothschild, E. M. Stein, “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137:3-4 (1976), 247–320 | MR
[13] A. Rudenko, “Local time for Gaussian processes as an element of Sobolev space”, Commun. stoch. anal., 3:2 (2009), 223–247 | MR
[14] A. Rudenko, “Some properties of the Ito-Wiener expansion of the solution of a stochastic differential equation and local times”, Stochastic Processes and their Applications, 122:6 (2012), 2454–2479 | DOI | MR | Zbl
[15] Daniel W. Stroock, Partial differential equations for probabilists, Cambridge Studies in Advanced Mathematics, 112, Cambridge University Press, Cambridge, 2008 | MR | Zbl
[16] N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, 100, Cambridge University Press, Cambridge, 1992 | MR