Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2012_18_2_a8, author = {A. Pogorui}, title = {System of interacting particles with {Markovian} switching}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {83--95}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a8/} }
A. Pogorui. System of interacting particles with Markovian switching. Teoriâ slučajnyh processov, Tome 18 (2012) no. 2, pp. 83-95. http://geodesic.mathdoc.fr/item/THSP_2012_18_2_a8/
[1] M. Kac, “A stochastic model related to the telegrapher's equation”, Rocky Mt. J. Math., 4 (1974), 497–509 | DOI | MR | Zbl
[2] M. A. Pinsky, Lectures on Random Evolution, World Scientific, Singapore, 1991 | MR | Zbl
[3] A. A. Pogorui, R. M. Rodriguez-Dagnino, “One-dimensional semi-Markov evolutions with general Erlang sojourn times”, Random Oper. Stoch. Equat., 13 (2005), 399–405 | DOI | MR | Zbl
[4] G. A. Korn, T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York, 1961 | Zbl
[5] I. S. Gradshtein, I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1980 | MR
[6] R. A. Arratia, Coalescing Brownian Motions on the Line, Thesis (Ph.D.), Univ. of Wisconsin, Madison, 1979 | MR
[7] A. A. Dorogovtsev, “One Brownian stochastic flow”, Theory of Stoch. Processes, 10 (2010), 21–25 | MR
[8] A. A. Dorogovtsev, “Fourier–Wiener transforms of functionals on Arratia flow”, Ukr. Math. Bull., 4:3 (2007), 333–354 | MR
[9] Le Jan Yves, R. Olivier, “Flows, coalescence and noise”, Ann. of Probab., 32:2 (2004), 1247–1315 | DOI | MR | Zbl
[10] A. A. Pogorui, “Asymptotic expansion for the distribution of a Markovian random motion”, Random Oper. Stoch. Equat., 17 (2009), 189–196 | MR | Zbl
[11] A. A. Pogorui, “Fading evolution in multidimensional spaces”, Ukr. Math. J., 62:11 (2010), 1828–1834 | MR
[12] H. Bateman, A. Erdélyi, Higher Transcendental Functions, v. 1,2, McGraw Hill, New York, 1953–1955
[13] P. Meyer, “Processus a acroissements independants et positives”, Seminaire de probab. de Strasbourg, 3 (1969), 175–189 | MR
[14] A. A. Pogorui, “The stationary measure of the stochastic transfer process with reflecting boundaries in a semi-Markov medium”, Theor. Probab. Math. Statist., 74 (2007), 125–132 | DOI | MR
[15] J. Masoliver, J. M. Porra, G. H. Weiss, “Solution to the telegrapher's equation in the presence of reflecting and partly reflecting boundaries”, Phys. Rev., 48:2 (1993), 939-944 | MR
[16] D. Cox, Renewal Theory, Methuen, London, 1970 | MR