On the generalization of the McKean--Vlasov equation to the case where the total mass of particles is infinite
Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 119-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

The McKean–Vlasov equation describing the motion of a system of particles with infinite total mass is considered. The theorem of existence and uniqueness of a solution is proved. The solution is constructed by passing to the limit from that for the systems of particles having a finite total mass.
Keywords: Motion with interaction, McKean–Vlasov equation, stochastic differential equations.
@article{THSP_2012_18_1_a7,
     author = {M. V. Tantsiura},
     title = {On the generalization of the {McKean--Vlasov} equation to the case where the total mass of particles is infinite},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {119--129},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a7/}
}
TY  - JOUR
AU  - M. V. Tantsiura
TI  - On the generalization of the McKean--Vlasov equation to the case where the total mass of particles is infinite
JO  - Teoriâ slučajnyh processov
PY  - 2012
SP  - 119
EP  - 129
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a7/
LA  - en
ID  - THSP_2012_18_1_a7
ER  - 
%0 Journal Article
%A M. V. Tantsiura
%T On the generalization of the McKean--Vlasov equation to the case where the total mass of particles is infinite
%J Teoriâ slučajnyh processov
%D 2012
%P 119-129
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a7/
%G en
%F THSP_2012_18_1_a7
M. V. Tantsiura. On the generalization of the McKean--Vlasov equation to the case where the total mass of particles is infinite. Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 119-129. http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a7/

[1] D. A. Dawson, “Measure-Valued Markov Processes”, Ecole d'Eté de Probabilitës de Saint-Flour, Lecture Notes Math., XXI, ed. P. L. Hennequin, Springer, Berlin, 1991, 1-260 | MR

[2] D. A. Dawson, J. Vaillancourt, “Stochastic McKean–Vlasov equations”, Nonlin. Diff. Equa. Appl., 2 (1995), 199–229 | DOI | MR | Zbl

[3] A. A. Dorogovtsev, “Measure-valued Markov processes and stochastic flows on abstract spaces”, Stochast. and Stochast. Reports, 2004, no. 5, 395–407 | DOI | MR | Zbl

[4] A. A. Dorogovtsev, “Stochastic flows with interaction and measure-valued processes”, Int. J. Math. Math. Sci., 2003, no. 63, 3963–3977 | DOI | MR | Zbl

[5] A. A. Dorogovtsev, Measure-Valued Processes and Stochastic Flows, Institute of Mathematics of the NAS of Ukraine, Kyiv, 2007 (in Russian) | MR | Zbl

[6] P. Kotelenez, “A class of quasilinear stochastic partial differential equations of McKean–Vlasov type with mass conservation”, Probab. Theory Related Fields, 102:2 (1995), 159–188 | DOI | MR | Zbl

[7] T. M. Liggett, Interacting Particle Systems, Springer, New York, 1985 | MR | Zbl

[8] H. P. McKean, “Propagation of chaos for a class of non-linear parabolic equations”, Stochastic Differential Equations, Lecture Series in Differential Equations, 7, 1967, 41–57 | MR

[9] A. Yu. Pilipenko, “Measure-valued diffusions and continual systems of interacting particles in random media”, Ukr. Math. J., 57:9 (2005), 1289–1301 | DOI | MR | Zbl

[10] A. V. Skorohod, Stochastic Equations for Complex Systems, Reidel, Dordrecht, 1988 | MR | Zbl

[11] A. V. Skorohod, “Measure-valued diffusion”, Ukr. Math. J., 49:3 (1997), 506–513 | DOI | MR

[12] A.-S. Sznitman, “Topics in propagation of chaos”, Ecole d'Ete de Probabilites de Saint Flour, Lecture Notes in Math., XXI, ed. P. L. Hennequin, Springer, Berlin, 1991, 165-251 | DOI | MR

[13] H. Tanaka, “Probabilistic treatment of the Boltzmann equation of Maxwellian molecules”, Z. Wahrsch. Verw. Gebiete, 46:1 (1978/79), 67–105 | DOI | MR | Zbl

[14] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl

[15] A. V. Skorokhod, Research in Theory of Random Processes, Kyiv Univ., Kyiv, 1961 (in Russian)