Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2012_18_1_a7, author = {M. V. Tantsiura}, title = {On the generalization of the {McKean--Vlasov} equation to the case where the total mass of particles is infinite}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {119--129}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a7/} }
TY - JOUR AU - M. V. Tantsiura TI - On the generalization of the McKean--Vlasov equation to the case where the total mass of particles is infinite JO - Teoriâ slučajnyh processov PY - 2012 SP - 119 EP - 129 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a7/ LA - en ID - THSP_2012_18_1_a7 ER -
%0 Journal Article %A M. V. Tantsiura %T On the generalization of the McKean--Vlasov equation to the case where the total mass of particles is infinite %J Teoriâ slučajnyh processov %D 2012 %P 119-129 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a7/ %G en %F THSP_2012_18_1_a7
M. V. Tantsiura. On the generalization of the McKean--Vlasov equation to the case where the total mass of particles is infinite. Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 119-129. http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a7/
[1] D. A. Dawson, “Measure-Valued Markov Processes”, Ecole d'Eté de Probabilitës de Saint-Flour, Lecture Notes Math., XXI, ed. P. L. Hennequin, Springer, Berlin, 1991, 1-260 | MR
[2] D. A. Dawson, J. Vaillancourt, “Stochastic McKean–Vlasov equations”, Nonlin. Diff. Equa. Appl., 2 (1995), 199–229 | DOI | MR | Zbl
[3] A. A. Dorogovtsev, “Measure-valued Markov processes and stochastic flows on abstract spaces”, Stochast. and Stochast. Reports, 2004, no. 5, 395–407 | DOI | MR | Zbl
[4] A. A. Dorogovtsev, “Stochastic flows with interaction and measure-valued processes”, Int. J. Math. Math. Sci., 2003, no. 63, 3963–3977 | DOI | MR | Zbl
[5] A. A. Dorogovtsev, Measure-Valued Processes and Stochastic Flows, Institute of Mathematics of the NAS of Ukraine, Kyiv, 2007 (in Russian) | MR | Zbl
[6] P. Kotelenez, “A class of quasilinear stochastic partial differential equations of McKean–Vlasov type with mass conservation”, Probab. Theory Related Fields, 102:2 (1995), 159–188 | DOI | MR | Zbl
[7] T. M. Liggett, Interacting Particle Systems, Springer, New York, 1985 | MR | Zbl
[8] H. P. McKean, “Propagation of chaos for a class of non-linear parabolic equations”, Stochastic Differential Equations, Lecture Series in Differential Equations, 7, 1967, 41–57 | MR
[9] A. Yu. Pilipenko, “Measure-valued diffusions and continual systems of interacting particles in random media”, Ukr. Math. J., 57:9 (2005), 1289–1301 | DOI | MR | Zbl
[10] A. V. Skorohod, Stochastic Equations for Complex Systems, Reidel, Dordrecht, 1988 | MR | Zbl
[11] A. V. Skorohod, “Measure-valued diffusion”, Ukr. Math. J., 49:3 (1997), 506–513 | DOI | MR
[12] A.-S. Sznitman, “Topics in propagation of chaos”, Ecole d'Ete de Probabilites de Saint Flour, Lecture Notes in Math., XXI, ed. P. L. Hennequin, Springer, Berlin, 1991, 165-251 | DOI | MR
[13] H. Tanaka, “Probabilistic treatment of the Boltzmann equation of Maxwellian molecules”, Z. Wahrsch. Verw. Gebiete, 46:1 (1978/79), 67–105 | DOI | MR | Zbl
[14] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl
[15] A. V. Skorokhod, Research in Theory of Random Processes, Kyiv Univ., Kyiv, 1961 (in Russian)