Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2012_18_1_a6, author = {A. Pogorui}, title = {The distribution of random motion in {semi-Markov} media}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {111--118}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a6/} }
A. Pogorui. The distribution of random motion in semi-Markov media. Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 111-118. http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a6/
[1] E. Orsingher, A. De Gregorio, “Random flights in higher spaces”, J. Theor. Probab., 20 (2007), 769–806 | DOI | MR | Zbl
[2] A. D. Kolesnik, “Random motions at finite speed in higher dimensions”, J. Stat. Phys., 131 (2008), 1039–1065 | DOI | MR | Zbl
[3] A. Di Crescenzo, “On random motions with velocities alternating at Erlang-distributed random times”, Adv. Appl. Probab., 61 (2001), 690–701 | MR
[4] A. A. Pogorui, R. M. Rodriguez-Dagnino, “One-dimensional semi-Markov evolutions with general Erlang sojourn times”, Random Oper. Stoch. Equ., 13 (2005), 1720–1724 | DOI | MR
[5] A. A. Pogorui, “Fading evolution in multidimensional spaces”, Ukr. Math. J., 62:11 (2010), 1828–1834 | MR
[6] A. A. Pogorui, “The distribution of random evolution in Erlang semi-Markov media”, Theory of Stoch. Processes, 17:1 (2011), 90–99 | MR | Zbl
[7] A. A. Pogorui, R. M. Rodriguez-Dagnino, “Isotropic random motion at finite speed with $K$-Erlang distributed direction alternations”, J. Stat. Phys., 145 (2011), 102–114 | DOI | MR
[8] L. Beghin, E. Orsingher, “Moving randomly amid scattered obstacles”, Stochastics, 82 (2010), 201–229 | MR | Zbl
[9] G. Le Caer, “A Pearson-Dirichlet random walk”, J. Stat. Phys., 140 (2010), 728–751 | DOI | MR | Zbl
[10] G. Le Caer, “A new family of solvable Pearson-Dirichlet random walks”, J. Stat. Phys., 144 (2011), 23–45 | DOI | MR | Zbl
[11] S. Bochner, K. Chandrasekhar, Fourier Transforms, Annals of Math. Studies, 19, Princeton University Press, 1949 | MR | Zbl
[12] N. W. McLachlan, Bessel Functions for Engineers, Clarendon Press, Oxford, 1995
[13] I. S. Gradshtein, I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products, Academic Press, New York, 1980