Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2012_18_1_a5, author = {Alexei M. Kulik and Daryna D. Soboleva}, title = {Large deviations for one-dimensional {SDE} with discontinuous diffusion coefficient}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {101--110}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a5/} }
TY - JOUR AU - Alexei M. Kulik AU - Daryna D. Soboleva TI - Large deviations for one-dimensional SDE with discontinuous diffusion coefficient JO - Teoriâ slučajnyh processov PY - 2012 SP - 101 EP - 110 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a5/ LA - en ID - THSP_2012_18_1_a5 ER -
Alexei M. Kulik; Daryna D. Soboleva. Large deviations for one-dimensional SDE with discontinuous diffusion coefficient. Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a5/
[1] M. I. Freidlin, A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer, New York, 1998 | MR | Zbl
[2] T. S. Chiang, S. J. Sheu, “Large deviations of diffusion processes with discontinuous drift and their occupation times”, Ann. Probab., 28 (2000), 140–165 | DOI | MR | Zbl
[3] T. S. Chiang, S. J. Sheu, “Small perturbations of diffusions in inhomogeneous media”, Ann. Inst. Henri Poincaré, 38:3 (2002), 285–318 | DOI | MR | Zbl
[4] I. H. Krykun, “Large deviation principle for stochastic equations with local time”, Theory of Stochastic Processes, 15(31):2 (2009), 140–155 | MR | Zbl
[5] Jin Feng, T. G. Kurtz, Large Deviations for Stochastic Processes, AMS, Providence, RI, 2006 | MR | Zbl
[6] A. M. Kulik, “Large deviation estimates for solutions of Fredholm-type equations with small random operator perturbations”, Theory of Stochastic Processes, 11(27):1-2 (2005), 81–95 | MR | Zbl
[7] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981 | MR | Zbl
[8] V. I. Bogachev, Differentiable Measures and the Malliavin Calculus, Mathematical Survys and Monographs, 164, AMS, Providence, RI, 2010 | DOI | MR | Zbl
[9] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover, New York, 1999