Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2012_18_1_a2, author = {A. B. Kharazishvili}, title = {Ergodic measures and the definability of subgroups via normal extensions of such measures}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {58--64}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a2/} }
TY - JOUR AU - A. B. Kharazishvili TI - Ergodic measures and the definability of subgroups via normal extensions of such measures JO - Teoriâ slučajnyh processov PY - 2012 SP - 58 EP - 64 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a2/ LA - en ID - THSP_2012_18_1_a2 ER -
A. B. Kharazishvili. Ergodic measures and the definability of subgroups via normal extensions of such measures. Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 58-64. http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a2/
[1] V. Bogachev, Measure Theory, Springer-Verlag, Berlin-Heidelberg, 2007 | MR | Zbl
[2] V. V. Buldygin, A. B. Kharazishvili, Geometric Aspects of Probability Theory and Mathematical Statistics, Kluwer Academic Publishers, Dordrecht, 2000 | MR | Zbl
[3] W. W. Comfort, “Topological groups”, Handbook of Set-Theoretic Topology, eds. K. Kunen, J. E. Vaughan, North-Holland Publ. Co., Amsterdam, 1984 | MR
[4] P. R. Halmos, Measure Theory, D. Van Nostrand, New York, 1950 | MR | Zbl
[5] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis, v. I, Springer-Verlag, Berlin, 1963 | Zbl
[6] T. Jech, Set Theory, Academic Press, New York-London, 1978 | MR | Zbl
[7] S. Kakutani, J. C. Oxtoby, “Construction of a nonseparable invariant extension of the Lebesgue measure space”, Ann. Math., 52 (1950), 580–590. | DOI | MR | Zbl
[8] A. Kanamori, The Higher Infinite, Springer-Verlag, Heifdelberg, 2003 | MR | Zbl
[9] A. B. Kharazishvili, Invariant Extensions of the Lebesgue Measure, Tbilisi State University Press, Tbilisi, 1983 (in Russian) | MR
[10] A. B. Kharazishvili, “To the uniqueness property of the Haar measure”, Reports of Seminar of I. Vekua, 18, Institute of Applied Mathematics TSU, 1984 (in Russian) | MR
[11] A.Ḃ. Kharazishvili, Nonmeasurable Sets and Functions, Elsevier, Amsterdam, 2004 | MR | Zbl
[12] A. B. Kharazishvili, Topics in Measure Theory and Real Analysis, Atlantis Press and World Scientific, Amsterdam-Paris, 2009 | MR | Zbl
[13] K. Kodaira, S. Kakutani, “A nonseparable translation invariant extension of the Lebesgue measure space”, Ann. Math., 52 (1950), 574–579 | DOI | MR | Zbl
[14] K. Kunen, Set Theory, North-Holland Publ. Co., Amsterdam, 1980 | MR | Zbl
[15] K. Kuratowski, A. Mostowski, Set Theory, North-Holland Publ. Co., Amsterdam, 1967 | MR
[16] J. C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1971 | MR | Zbl
[17] J. C. Oxtoby, S. Ulam, “Measure-preserving homeomorphisms and metrical transitivity”, Annals of Mathematics, 42:2 (1941), 874–920 | DOI | MR | Zbl
[18] Sh. Pkhakadze, “The theory of Lebesgue measure”, Trudy Tbilis. Mat. Inst. im. A. Razmadze, 25, Akad. Nauk Gruz. SSR, 1958, 3–272 (in Russian) | MR
[19] A. V. Skorokhod, Integration in Hilbert space, Springer-Verlag, Berlin-Heidelberg, 1974 | MR | Zbl