Ergodic measures and the definability of subgroups via normal extensions of such measures
Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 58-64
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that any subgroup $H$ of an uncountable $\sigma$-compact locally compact topological group $\Gamma$ is completely determined by a certain family of left $H$-invariant extensions of the left Haar measure $\mu$ on $\Gamma$. An abstract analogue of this fact is also established for a nonzero $\sigma$-finite ergodic measure given on an uncountable commutative group.
Keywords:
Locally compact topological group, Haar measure, invariant extension of measure, ergodicity, commutative group.
@article{THSP_2012_18_1_a2,
author = {A. B. Kharazishvili},
title = {Ergodic measures and the definability of subgroups via normal extensions of such measures},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {58--64},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a2/}
}
TY - JOUR AU - A. B. Kharazishvili TI - Ergodic measures and the definability of subgroups via normal extensions of such measures JO - Teoriâ slučajnyh processov PY - 2012 SP - 58 EP - 64 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a2/ LA - en ID - THSP_2012_18_1_a2 ER -
A. B. Kharazishvili. Ergodic measures and the definability of subgroups via normal extensions of such measures. Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 58-64. http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a2/