Ergodic measures and the definability of subgroups via normal extensions of such measures
Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 58-64

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that any subgroup $H$ of an uncountable $\sigma$-compact locally compact topological group $\Gamma$ is completely determined by a certain family of left $H$-invariant extensions of the left Haar measure $\mu$ on $\Gamma$. An abstract analogue of this fact is also established for a nonzero $\sigma$-finite ergodic measure given on an uncountable commutative group.
Keywords: Locally compact topological group, Haar measure, invariant extension of measure, ergodicity, commutative group.
@article{THSP_2012_18_1_a2,
     author = {A. B. Kharazishvili},
     title = {Ergodic measures and the definability of subgroups via normal extensions of such measures},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {58--64},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a2/}
}
TY  - JOUR
AU  - A. B. Kharazishvili
TI  - Ergodic measures and the definability of subgroups via normal extensions of such measures
JO  - Teoriâ slučajnyh processov
PY  - 2012
SP  - 58
EP  - 64
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a2/
LA  - en
ID  - THSP_2012_18_1_a2
ER  - 
%0 Journal Article
%A A. B. Kharazishvili
%T Ergodic measures and the definability of subgroups via normal extensions of such measures
%J Teoriâ slučajnyh processov
%D 2012
%P 58-64
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a2/
%G en
%F THSP_2012_18_1_a2
A. B. Kharazishvili. Ergodic measures and the definability of subgroups via normal extensions of such measures. Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 58-64. http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a2/