Ergodic measures and the definability of subgroups via normal extensions of such measures
Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 58-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that any subgroup $H$ of an uncountable $\sigma$-compact locally compact topological group $\Gamma$ is completely determined by a certain family of left $H$-invariant extensions of the left Haar measure $\mu$ on $\Gamma$. An abstract analogue of this fact is also established for a nonzero $\sigma$-finite ergodic measure given on an uncountable commutative group.
Keywords: Locally compact topological group, Haar measure, invariant extension of measure, ergodicity, commutative group.
@article{THSP_2012_18_1_a2,
     author = {A. B. Kharazishvili},
     title = {Ergodic measures and the definability of subgroups via normal extensions of such measures},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {58--64},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a2/}
}
TY  - JOUR
AU  - A. B. Kharazishvili
TI  - Ergodic measures and the definability of subgroups via normal extensions of such measures
JO  - Teoriâ slučajnyh processov
PY  - 2012
SP  - 58
EP  - 64
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a2/
LA  - en
ID  - THSP_2012_18_1_a2
ER  - 
%0 Journal Article
%A A. B. Kharazishvili
%T Ergodic measures and the definability of subgroups via normal extensions of such measures
%J Teoriâ slučajnyh processov
%D 2012
%P 58-64
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a2/
%G en
%F THSP_2012_18_1_a2
A. B. Kharazishvili. Ergodic measures and the definability of subgroups via normal extensions of such measures. Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 58-64. http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a2/

[1] V. Bogachev, Measure Theory, Springer-Verlag, Berlin-Heidelberg, 2007 | MR | Zbl

[2] V. V. Buldygin, A. B. Kharazishvili, Geometric Aspects of Probability Theory and Mathematical Statistics, Kluwer Academic Publishers, Dordrecht, 2000 | MR | Zbl

[3] W. W. Comfort, “Topological groups”, Handbook of Set-Theoretic Topology, eds. K. Kunen, J. E. Vaughan, North-Holland Publ. Co., Amsterdam, 1984 | MR

[4] P. R. Halmos, Measure Theory, D. Van Nostrand, New York, 1950 | MR | Zbl

[5] E. Hewitt, K. A. Ross, Abstract Harmonic Analysis, v. I, Springer-Verlag, Berlin, 1963 | Zbl

[6] T. Jech, Set Theory, Academic Press, New York-London, 1978 | MR | Zbl

[7] S. Kakutani, J. C. Oxtoby, “Construction of a nonseparable invariant extension of the Lebesgue measure space”, Ann. Math., 52 (1950), 580–590. | DOI | MR | Zbl

[8] A. Kanamori, The Higher Infinite, Springer-Verlag, Heifdelberg, 2003 | MR | Zbl

[9] A. B. Kharazishvili, Invariant Extensions of the Lebesgue Measure, Tbilisi State University Press, Tbilisi, 1983 (in Russian) | MR

[10] A. B. Kharazishvili, “To the uniqueness property of the Haar measure”, Reports of Seminar of I. Vekua, 18, Institute of Applied Mathematics TSU, 1984 (in Russian) | MR

[11] A.Ḃ. Kharazishvili, Nonmeasurable Sets and Functions, Elsevier, Amsterdam, 2004 | MR | Zbl

[12] A. B. Kharazishvili, Topics in Measure Theory and Real Analysis, Atlantis Press and World Scientific, Amsterdam-Paris, 2009 | MR | Zbl

[13] K. Kodaira, S. Kakutani, “A nonseparable translation invariant extension of the Lebesgue measure space”, Ann. Math., 52 (1950), 574–579 | DOI | MR | Zbl

[14] K. Kunen, Set Theory, North-Holland Publ. Co., Amsterdam, 1980 | MR | Zbl

[15] K. Kuratowski, A. Mostowski, Set Theory, North-Holland Publ. Co., Amsterdam, 1967 | MR

[16] J. C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1971 | MR | Zbl

[17] J. C. Oxtoby, S. Ulam, “Measure-preserving homeomorphisms and metrical transitivity”, Annals of Mathematics, 42:2 (1941), 874–920 | DOI | MR | Zbl

[18] Sh. Pkhakadze, “The theory of Lebesgue measure”, Trudy Tbilis. Mat. Inst. im. A. Razmadze, 25, Akad. Nauk Gruz. SSR, 1958, 3–272 (in Russian) | MR

[19] A. V. Skorokhod, Integration in Hilbert space, Springer-Verlag, Berlin-Heidelberg, 1974 | MR | Zbl