Perturbed self-intersection local time
Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 45-57

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a symmetric random walk related to independent Rademacher random variables. Our aim is to study some modified versions of the so called self-intersection local time of this random walk. The modified versions of the self-intersection local time are obtained by introducing a time $t$ and a sequence of independent with the same distribution uniform on $(0,1)$ random variables $Y_i$'s, independent of the random walk. In this work, we study a distance between the standard self-intersection local time of the random walk and some modified versions (perturbed) of it. We also state a two-parameter strong approximation for the centered local time of the hybrids of empirical and partial sums processes by a process defined by a Wiener sheet combined with an independent Brownian motion.
Keywords: Self-intersection local time, symmetric random walk, strong approximations.
@article{THSP_2012_18_1_a1,
     author = {S. Alvarez-Andrade},
     title = {Perturbed self-intersection local time},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a1/}
}
TY  - JOUR
AU  - S. Alvarez-Andrade
TI  - Perturbed self-intersection local time
JO  - Teoriâ slučajnyh processov
PY  - 2012
SP  - 45
EP  - 57
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a1/
LA  - en
ID  - THSP_2012_18_1_a1
ER  - 
%0 Journal Article
%A S. Alvarez-Andrade
%T Perturbed self-intersection local time
%J Teoriâ slučajnyh processov
%D 2012
%P 45-57
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a1/
%G en
%F THSP_2012_18_1_a1
S. Alvarez-Andrade. Perturbed self-intersection local time. Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 45-57. http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a1/