Perturbed self-intersection local time
Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 45-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a symmetric random walk related to independent Rademacher random variables. Our aim is to study some modified versions of the so called self-intersection local time of this random walk. The modified versions of the self-intersection local time are obtained by introducing a time $t$ and a sequence of independent with the same distribution uniform on $(0,1)$ random variables $Y_i$'s, independent of the random walk. In this work, we study a distance between the standard self-intersection local time of the random walk and some modified versions (perturbed) of it. We also state a two-parameter strong approximation for the centered local time of the hybrids of empirical and partial sums processes by a process defined by a Wiener sheet combined with an independent Brownian motion.
Keywords: Self-intersection local time, symmetric random walk, strong approximations.
@article{THSP_2012_18_1_a1,
     author = {S. Alvarez-Andrade},
     title = {Perturbed self-intersection local time},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a1/}
}
TY  - JOUR
AU  - S. Alvarez-Andrade
TI  - Perturbed self-intersection local time
JO  - Teoriâ slučajnyh processov
PY  - 2012
SP  - 45
EP  - 57
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a1/
LA  - en
ID  - THSP_2012_18_1_a1
ER  - 
%0 Journal Article
%A S. Alvarez-Andrade
%T Perturbed self-intersection local time
%J Teoriâ slučajnyh processov
%D 2012
%P 45-57
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a1/
%G en
%F THSP_2012_18_1_a1
S. Alvarez-Andrade. Perturbed self-intersection local time. Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 45-57. http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a1/

[1] S. Alvarez-Andrade, “Some asymptotic properties of the hybrids of empirical and partial-sum processes”, Rev. Mat. Iberoamericana, 24 (2008), 31–41 | DOI | MR | Zbl

[2] R. Bass, D Khoshnevisan, “Laws of the iterated logarithm for local times of the empirical process”, Ann. Probab., 23 (1995), 388–399. | DOI | MR | Zbl

[3] X. Chen, W. Li, “Large and moderate deviation for intersection local times”, Probab. Theory Relat Fields, 128 (2004), 213-254 | DOI | MR | Zbl

[4] X. Chen, Random Walk Intersections: large deviations and related topics, Mathematical surveys and monographs, 157, American Math. Society, 2010 | DOI | MR

[5] X. Chen, “Limit laws for the energy of a charged polymer”, Ann. Inst. H. Poincaré Probab. Statist., 44 (2008), 638–672 | DOI | MR | Zbl

[6] X. Chen, D. Khoshnevisan, “From charged Polymers to Random Walk in random scenery”, Optimality : The third Erich L. Lehmann Symposium, IMS Lectures Notes-Monograph Series, 2009, 237–251 | DOI | MR | Zbl

[7] E. Csáki, M. Csörgő, A. Földes, P. Révész, “Random walk local time approximated by a Wiener sheet combined with an independent Brownian motion”, Ann. Inst. H. Poincaré Probab. Statist., 45 (2009), 515–544 | DOI | MR | Zbl

[8] E. Csáki, M. Csörgő, A. Földes, P. Révész, “Strong approximation of additive functionals”, J. Theor. Probab., 5 (1992), 679–706 | DOI | MR | Zbl

[9] E. Csáki, M. Csörgő, A. Földes, P. Révész, “How big are the increments of the local time of a Wiener process?”, Ann. Probab., 11 (1983), 593–608 | DOI | MR | Zbl

[10] M. Csörgő, P. Révész, Strong Approximations in Probability and Statistics, Probability and Mathematical Statistics Monographs, Academic Press, London, 1981 | MR | Zbl

[11] M. Csörgő, Z. Shi, M. Yor, “Some asymptotic properties of the local time of the uniform empirical process”, Bernoulli, 5 (1999), 1035–1058 | DOI | MR | Zbl

[12] M. Csörgő, “Random walk and Brownian local times in Wiener sheets”, Periodica Math. Hung., 61 (2010), 1–21 | DOI | MR | Zbl

[13] J. Diebolt, “A nonparametric test for the regression function: Asymptotic theory”, J. Statist. Plann. Inference, 44 (1995), 1–17 | DOI | MR | Zbl

[14] L. Horváth, “Approximations for hybrids of empirical and partial sums processes”, J. Statist. Plann. Inference, 88 (2000), 1–18 | DOI | MR | Zbl

[15] Y. Hu, D. Khoshnevisan, “Strong approximations in a charged-polymer model”, Periodica Math. Hungar., 61 (2010), 213–224 | DOI | MR | Zbl

[16] D. Khoshnevisan, “Level crossings of the empirical process”, Stoch. Proc. Appl., 43 (1992), 331–343 | DOI | MR | Zbl

[17] D. Khoshnevisan, “An embedding of compensated compound Poisson processes with applications to local times”, Ann. Prob., 21 (1993), 340–361 | DOI | MR | Zbl

[18] H. Kesten, “An iterated logarithm law for local time”, Duke Math. J., 32 (1965), 447–456 | DOI | MR | Zbl

[19] P. Révész, “Local time and invariance”, Analytical Methods in Probability Theory, Lecture Notes in Math., 861, Springer, Berlin-New York, 1981 | MR

[20] P. Révész, Random Walk in Random and Non-Random Environments, World Scientific, 1990 | MR | Zbl