Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2012_18_1_a0, author = {G. Alsmeyer and A. Winkler}, title = {Metabasins -- a state space aggregation for highly disordered energy landscapes}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {3--44}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a0/} }
TY - JOUR AU - G. Alsmeyer AU - A. Winkler TI - Metabasins -- a state space aggregation for highly disordered energy landscapes JO - Teoriâ slučajnyh processov PY - 2012 SP - 3 EP - 44 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a0/ LA - en ID - THSP_2012_18_1_a0 ER -
G. Alsmeyer; A. Winkler. Metabasins -- a state space aggregation for highly disordered energy landscapes. Teoriâ slučajnyh processov, Tome 18 (2012) no. 1, pp. 3-44. http://geodesic.mathdoc.fr/item/THSP_2012_18_1_a0/
[1] V. S. Barbu, N. Limnios, Semi-Markov chains and hidden semi-Markov models toward applications: Their use in reliability and DNA analysis, Lecture Notes in Statistics, 191, Springer, New York, 2008 | MR | Zbl
[2] J. Beltrán, C. Landim, “Metastability of reversible finite state markov processes”, Stochastic Processes and their Applications, 121:8 (2011), 1633 – 1677 | DOI | MR | Zbl
[3] J. P. Bouchaud, “Weak ergodicity breaking and aging in disordered systems”, Journal de Physique I France, 2 (1992), 1705–1713 | DOI
[4] A. Bovier, “Metastability: a potential theoretic approach”, Proceedings of the International Congress of Mathematicians (Madrid, Spain, 2006), v. III, Europen Mathematical Society, Zürich, 2006, 499–518 | MR | Zbl
[5] A. Bovier, M. Eckhoff, V. Gayrard, M. Klein, “Metastability in stochastic dynamics of disordered mean-field models”, Probab. Theory Related Fields, 119:1 (2001), 99–161 | DOI | MR | Zbl
[6] M. Cassandro, A. Galves, E. Olivieri, M. E. Vares, “Metastable behavior of stochastic dynamics: a pathwise approach”, J. Statist. Phys., 35:5-6 (1984), 603–634 | DOI | MR | Zbl
[7] J. N. Darroch, E. Seneta, “On quasi-stationary distributions in absorbing discrete-time finite Markov chains”, J. Appl. Probability, 2:1 (1965), 88–100 | DOI | MR | Zbl
[8] M. I. Freidlin, A. D. Wentzell, Random perturbations of dynamical systems, Translated from the 1979 Russian original by Joseph Szücs, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 260, second edition, Springer-Verlag, New York, 1998 | DOI | MR | Zbl
[9] G. Frobenius, “Über Matrizen aus nicht negativen Elementen”, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaft, 1912, 456–477 | Zbl
[10] F. R. Gantmacher, Applications of the theory of matrices, Translated by J. L. Brenner, with the assistance of D. W. Bushaw and S. Evanusa, Interscience Publishers, Inc., New York, 1959 | MR | Zbl
[11] M. Goldstein, “Viscous liquids and the glass transition: A potential energy barrier picture”, The Journal of Chemical Physics, 51:9 (1969), 3728–3739 | DOI
[12] A. Heuer, “Exploring the potential energy landscape of glass-forming systems: from inherent structures via metabasins to macroscopic transport”, J. Phys.: Condens. Matter, 20:37 (2008), 373101 | DOI
[13] T. R. Kirkpatrick, D. Thirumalai, P. G. Wolynes, “Scaling concepts for the dynamics of viscous liquids near an ideal glassy state”, Phys. Rev. A, 40:2 (1989), 1045–1054 | DOI
[14] T. M. Liggett, Interacting particle systems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276, Springer-Verlag, New York, 1985 | DOI | MR | Zbl
[15] T. Okushima, T. Niiyama, K. S. Ikeda, Y. Shimizu, “Graph-based analysis of kinetics on multidimensional potential-energy surfaces”, Phys. Rev. E, 80:3 (2009), 036112 | DOI | MR
[16] E. Olivieri, E. Scoppola, “Markov chains with exponentially small transition probabilities: first exit problem from a general domain. {II}. The general case”, J. Statist. Phys., 84:5-6 (1996), 987–1041 | DOI | MR | Zbl
[17] P. K. Pollett, Quasi-stationary distributions: A bibliography, Version 2010 } {\tt http://www.maths.uq.edu.au/p̃kp/papers/qsds/qsds.html
[18] O. Rubner, A. Heuer, “From elementary steps to structural relaxation: A continuous-time random-walk analysis of a supercooled liquid”, Phys. Rev. E, 78:1 (2008), 011504 | DOI
[19] S. Sastry, P. G. Debenedetti, F. H. Stillinger, “Signatures of distrinct dynamical regimes in the energy landscape of a glass-forming liquid”, Nature, 393 (1998), 554–557 | DOI
[20] E. Scoppola, “Renormalization group for Markov chains and application to metastability”, J. Statist. Phys., 73:1-2 (1993), 83–121 | DOI | MR | Zbl
[21] E. Scoppola, “Metastability for Markov chains: a general procedure based on renormalization group ideas”, Probability and phase transition (Cambridge, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 420, Kluwer Acad. Publ., Dordrecht, 1994, 303–322 | MR | Zbl
[22] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, 1st edition, North Holland, 1987