@article{THSP_2011_17_2_a1,
author = {A. Babenko and E. Belitser},
title = {Oracle {Wiener} filtering of a {Gaussian} signal},
journal = {Teori\^a slu\v{c}ajnyh processov},
pages = {16--24},
year = {2011},
volume = {17},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a1/}
}
A. Babenko; E. Belitser. Oracle Wiener filtering of a Gaussian signal. Teoriâ slučajnyh processov, Tome 17 (2011) no. 2, pp. 16-24. http://geodesic.mathdoc.fr/item/THSP_2011_17_2_a1/
[1] A. Babenko, E. Belitser, “On posterior pointwise convergence rate of a Gaussian signal under a conjugate prior”, Statist. Prob. Lett., 79 (2009), 670–675
[2] Probl. Inf. Transm., 44, 321–332
[3] E. Belitser, B. Levit, “On the empirical Bayes approach to adaptive filtering”, Math. Meth. Statist., 12 (2003), 131–154
[4] I. A. Ibragimov, R. Z. Khasminski, Asymptotic Theory, Springer, New York rata, 1981
[5] I. Johnstone, Function Estimation and Gaussian Sequence Models Monograph draft, , 2009 http://www-stat.stanford.edu/ĩmj/
[6] O. V. Lepski, “One problem of adaptive estimation in Gaussian white noise”, Theory Probab. Appl., 35 (1990), 459–470
[7] O. V. Lepski, “Asymptotic minimax adaptive estimation. 1. Upper bounds”, Theory Probab. Appl., 36 (1991), 645–659
[8] O. V. Lepski, “Asymptotic minimax adaptive estimation. 2. Statistical model without optimal adaptation. Adaptive estimators”, Theory Probab. Appl., 37 (1992), 468–481
[9] X. Li and L. H. Zhao, “Bayesian nonparametric point estimation under a conjugate prior”, Statist. Prob. Lett., 58 (2002), 23–30
[10] H. Robbins, “An empirical Bayes approach to statistics”, Proc. 3rd Berkeley Symp. on Math. Statist. and Prob., v. 1, Univ. of California Press, Berkeley, 1956, 157–164
[11] A. Tsybakov, “Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes”, Ann. Statist., 26 (1998), 2420–2469
[12] A. Tsybakov, Introduction to nonparametric estimation, Springer, 2009