Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2011_17_1_a5, author = {V. V. Konarovskii}, title = {The martingale problem for a measure-valued process with heavy diffusing particles}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {50--60}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a5/} }
V. V. Konarovskii. The martingale problem for a measure-valued process with heavy diffusing particles. Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 50-60. http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a5/
[1] R. A. Arratia, Brownian motion on the line, PhD dissertation, Univ. Wisconsin, Madison, 1979
[2] D. A. Dawson, Z. H. Li, H. Wang, “Superprocesses with dependent spatial motion and general branching densities”, Elect. J. Probab., 6:25 (2001), 1–33
[3] D. A. Dawson, Measure-Valued Markov Processes, Lecture Notes in Math., Ecole d'Ete de Probabilites Saint-lour XXI, Berlin, 1993
[4] D. A. Dawson, Z. H. Li, X. Zhou, “Superprocesses with coalescing Brownian spatial motion as large-scale limits”, J. of Theor. Probability, 17:3 (2004), 673–692
[5] A. A. Dorogovtsev, Measure-Valued Processes and Stochastic Flows, Institute of Mathematics of the NAS of Ukraine, Kiev, 2007 (in Russian)
[6] A. A. Dorogovtsev, “One Brownian stochastic flow”, Theory of Stochastic Processes, 10(26):3–4 (2004), 21–25
[7] S. N. Ethier, T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986
[8] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, New York, 1983
[9] V. V. Konarovskii, “On infinite system of diffusing particles with coalescing”, Theory of Probab. and its Applications, 55:1 (2011), 134–144
[10] V. V. Konarovskii, “System of sticking diffusion particles of variable mass”, Ukr. Math. J., 62:1 (2010), 97–113
[11] T. M. Liggett, Interacting Particle Systems, Springer, Berlin, 1985
[12] C. Stricker, M. Yor, “Calcul stochastique dependant d'un parametre”, Z. Wahrsch. Verw. Gebiete, 45:2 (1978), 109–133
[13] H. Wang, “State classification for a class of measure-valued branching diffusions in a Brownian medium”, Probab. Theory Related Fields, 109 (1997), 39–55
[14] H. Wang, “A class of measure-valued branching diffusions in a random medium”, Stochastic Anal. Appl., 16 (1998), 753–786