On regularization of the formal Fourier--Wiener transform of the self-intersection local time of a planar Gaussian process
Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 28-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Fourier–Wiener transform of the formal expression for a multiple self-intersection local time is described in terms of an integral, which is divergent on the diagonals. The method of regularization we used in this work is related to the regularization of functions with nonintegrable singularities. The strong local nondeterminism property, which is more restrictive than the property of local nondeterminism introduced by S. Berman, is considered. Its geometrical meaning in the construction of the regularization is investigated. As an example, the problem of regularization is solved for a compact perturbation of the planar Wiener process.
Keywords: Multiple self-intersection local time, local nondeterminism.
Mots-clés : Fourier–Wiener transform
@article{THSP_2011_17_1_a3,
     author = {A. A. Dorogovtsev and O. L. Izyumtseva},
     title = {On regularization of the formal {Fourier--Wiener} transform of the self-intersection local time of a planar {Gaussian} process},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {28--38},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a3/}
}
TY  - JOUR
AU  - A. A. Dorogovtsev
AU  - O. L. Izyumtseva
TI  - On regularization of the formal Fourier--Wiener transform of the self-intersection local time of a planar Gaussian process
JO  - Teoriâ slučajnyh processov
PY  - 2011
SP  - 28
EP  - 38
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a3/
LA  - en
ID  - THSP_2011_17_1_a3
ER  - 
%0 Journal Article
%A A. A. Dorogovtsev
%A O. L. Izyumtseva
%T On regularization of the formal Fourier--Wiener transform of the self-intersection local time of a planar Gaussian process
%J Teoriâ slučajnyh processov
%D 2011
%P 28-38
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a3/
%G en
%F THSP_2011_17_1_a3
A. A. Dorogovtsev; O. L. Izyumtseva. On regularization of the formal Fourier--Wiener transform of the self-intersection local time of a planar Gaussian process. Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 28-38. http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a3/

[1] I. M. Gelfand, G. E. Shilov, Generalized Functions. Properties and Operations, Academic Press, Boston, MA, 1964

[2] E. B. Dynkin, “Regularized self-intersection local times of planar Brownian motion”, Ann. of Probab., 16:1 (1988), 58–74

[3] J. Rosen, “A renormalized local time for multiple intersection of planar Brownian motion”, Seminaire de Probabilities, 20 (1986), 515–531

[4] A. Dvoretzky, P. Erdös, S. Kakutani, “Multiple points of paths of Brownian motion in the plane”, Bulletin of the Research Counsil of Israel, 1954, 364–371

[5] L. C. G. Rogers, “Multiple points of Markov processes in a complete metric space”, Seminaire de Probabilities, 23 (1989), 186–197

[6] N.-R. Shieh, “Multiple points of a random field”, Proceed. of Amer. Math. Soc., 92:2 (1984), 279–282

[7] S. M. Berman, “Local nondeterminism and local times of Gaussian processes”, Indiana Univ. Math. J., 23:1 (1973), 69–94

[8] Yu. A. Rozanov, Random Fields and Stochastic Partial Differential Equations, Kluwer, Dordrecht, 1998

[9] S. M. Berman, “Self-intersections and local nondeterminism of Gaussian processes”, Ann. of Probab., 19:1 (1991), 160–191

[10] Hui–Hsiung Kuo, “Fourier–Wiener transform on brownian functionals”, Lect. Notes in Math., 828 (1980), 146–161

[11] P. R. Halmosh, V. S. Sunder, Bounded Integral Operators on $L_2$ Spaces, Springer, Berlin, 1978

[12] Svante Janson, Gaussian Hilbert Spaces, Cambridge Univ. Press, Cambridge, 1997

[13] B. Simon, The $P(\varphi)_2$ Euclidian (Quantum) Field Theory, Princeton Univ. Press, Princeton, 1974

[14] A. A. Dorogovtsev, V. V. Bakun, “Random mappings and a generalized additive functional of a Wiener process”, Theory of Probab. and Its Applications, 48:1 (2004), 63–79