Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2011_17_1_a3, author = {A. A. Dorogovtsev and O. L. Izyumtseva}, title = {On regularization of the formal {Fourier--Wiener} transform of the self-intersection local time of a planar {Gaussian} process}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {28--38}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a3/} }
TY - JOUR AU - A. A. Dorogovtsev AU - O. L. Izyumtseva TI - On regularization of the formal Fourier--Wiener transform of the self-intersection local time of a planar Gaussian process JO - Teoriâ slučajnyh processov PY - 2011 SP - 28 EP - 38 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a3/ LA - en ID - THSP_2011_17_1_a3 ER -
%0 Journal Article %A A. A. Dorogovtsev %A O. L. Izyumtseva %T On regularization of the formal Fourier--Wiener transform of the self-intersection local time of a planar Gaussian process %J Teoriâ slučajnyh processov %D 2011 %P 28-38 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a3/ %G en %F THSP_2011_17_1_a3
A. A. Dorogovtsev; O. L. Izyumtseva. On regularization of the formal Fourier--Wiener transform of the self-intersection local time of a planar Gaussian process. Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 28-38. http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a3/
[1] I. M. Gelfand, G. E. Shilov, Generalized Functions. Properties and Operations, Academic Press, Boston, MA, 1964
[2] E. B. Dynkin, “Regularized self-intersection local times of planar Brownian motion”, Ann. of Probab., 16:1 (1988), 58–74
[3] J. Rosen, “A renormalized local time for multiple intersection of planar Brownian motion”, Seminaire de Probabilities, 20 (1986), 515–531
[4] A. Dvoretzky, P. Erdös, S. Kakutani, “Multiple points of paths of Brownian motion in the plane”, Bulletin of the Research Counsil of Israel, 1954, 364–371
[5] L. C. G. Rogers, “Multiple points of Markov processes in a complete metric space”, Seminaire de Probabilities, 23 (1989), 186–197
[6] N.-R. Shieh, “Multiple points of a random field”, Proceed. of Amer. Math. Soc., 92:2 (1984), 279–282
[7] S. M. Berman, “Local nondeterminism and local times of Gaussian processes”, Indiana Univ. Math. J., 23:1 (1973), 69–94
[8] Yu. A. Rozanov, Random Fields and Stochastic Partial Differential Equations, Kluwer, Dordrecht, 1998
[9] S. M. Berman, “Self-intersections and local nondeterminism of Gaussian processes”, Ann. of Probab., 19:1 (1991), 160–191
[10] Hui–Hsiung Kuo, “Fourier–Wiener transform on brownian functionals”, Lect. Notes in Math., 828 (1980), 146–161
[11] P. R. Halmosh, V. S. Sunder, Bounded Integral Operators on $L_2$ Spaces, Springer, Berlin, 1978
[12] Svante Janson, Gaussian Hilbert Spaces, Cambridge Univ. Press, Cambridge, 1997
[13] B. Simon, The $P(\varphi)_2$ Euclidian (Quantum) Field Theory, Princeton Univ. Press, Princeton, 1974
[14] A. A. Dorogovtsev, V. V. Bakun, “Random mappings and a generalized additive functional of a Wiener process”, Theory of Probab. and Its Applications, 48:1 (2004), 63–79