Inhomogeneous diffusion processes on a half-line with jumps on its boundary
Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 119-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

By means of the method of classical potential theory, we construct a multiplicative operator family that describes an inhomogeneous diffusion process on a half-line with the Feller–Wentzel boundary condition which corresponds to the absorption and jumps of the process.
Keywords: Method of classical potential theory, multiplicative operator family, inhomogeneous diffusion process, Feller–Wentzel boundary condition.
@article{THSP_2011_17_1_a12,
     author = {R. V. Shevchuk},
     title = {Inhomogeneous diffusion processes on a half-line with jumps on its boundary},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {119--129},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a12/}
}
TY  - JOUR
AU  - R. V. Shevchuk
TI  - Inhomogeneous diffusion processes on a half-line with jumps on its boundary
JO  - Teoriâ slučajnyh processov
PY  - 2011
SP  - 119
EP  - 129
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a12/
LA  - en
ID  - THSP_2011_17_1_a12
ER  - 
%0 Journal Article
%A R. V. Shevchuk
%T Inhomogeneous diffusion processes on a half-line with jumps on its boundary
%J Teoriâ slučajnyh processov
%D 2011
%P 119-129
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a12/
%G en
%F THSP_2011_17_1_a12
R. V. Shevchuk. Inhomogeneous diffusion processes on a half-line with jumps on its boundary. Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 119-129. http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a12/

[1] W. Feller, “Generalized second order differential operators and their lateral conditions”, Illinois J. Math., 1 (1957), 495–504

[2] A. D. Wentzel, “Semigroups of operators that correspond to a generalized differential operator of second order”, Dokl. AN SSSR, 111:2 (1956), 269–272

[3] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968

[4] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, NJ, 1964

[5] P. P. Kononchuk, B. I. Kopytko, “About Feller semigroup that describes a diffusion process on a half-line with nonlocal boundary conditions”, Math. Bull., 4 (2007), 134–143

[6] A. L. Skubachevskii, “On Feller semigroups for multidimensional diffusion processes”, Dokl. AN, 341:2 (1995), 173–-176

[7] S. V. Anulova, “On stochastic differential equations with boundary conditions in a half-plane”, Izv. AN SSSR. Ser. Mat., 45:3 (1981), 491-–508

[8] S. V. Anulova, “On processes with Lévy generating operator in a half-space”, Izv. AN SSSR. Ser. Mat., 42:4 (1978), 708-–750

[9] M. I. Portenko, Diffusion Processes in Media with Membranes, Institute of Mathematics of the NAS of Ukraine, Kyiv, 1995 (in Ukrainian)

[10] E. B. Dynkin, Markov Processes, Plenum, New York, 1969

[11] K. Yosida, Functional Analysis, Springer, Berlin, 1965