Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2011_17_1_a11, author = {Christian Selinger}, title = {Zeta function regularized {Laplacian} on the smooth {Wasserstein} space above the unit circle}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {109--118}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a11/} }
TY - JOUR AU - Christian Selinger TI - Zeta function regularized Laplacian on the smooth Wasserstein space above the unit circle JO - Teoriâ slučajnyh processov PY - 2011 SP - 109 EP - 118 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a11/ LA - en ID - THSP_2011_17_1_a11 ER -
Christian Selinger. Zeta function regularized Laplacian on the smooth Wasserstein space above the unit circle. Teoriâ slučajnyh processov, Tome 17 (2011) no. 1, pp. 109-118. http://geodesic.mathdoc.fr/item/THSP_2011_17_1_a11/
[1] J.-D. Benamou, Y. Brenier, “A computational Fluid Mechanics solution to the Monge-Kantorovich mass transfer problem.”, Numer. Math., 84 (2000), 375–393
[2] Y. Brenier, “Polar factorization and monotone rearrangement of vector-valued functions.”, Comm. Pure Appl. Math., 44 (1991), 375–417
[3] A. Kriegl, P. Michor, A convenient setting of global analysis, AMS, Providence, 1997
[4] J. Lott, “Some geometric calculations on Wasserstein space”, Comm. Math. Phys., 277 (2008), 423–437
[5] R. McCann, “Polar factorization of maps on Riemannian manifolds”, Geom. Funct. Anal., 11 (2001), 589–608
[6] F. Otto, “The geometry of dissipative evolution equations: The porous medium equation”, Comm. Partial Differential Equations, 26 (2001), 101–174
[7] C. Selinger, Gradient Flows on the space of probability measures. On differential-geometric aspects of optimal transport, unpublished Master's Thesis, Universität Wien, 2006
[8] K.-Th. Sturm, M.-K. von Renesse, “Entropic Measure and Wasserstein Diffusion”, Annals of Prob., 37 (2009), 1114–1191
[9] C. Villani, Optimal transport, old and new, Springer, Grundlehren der mathematischen Wissenschaften, 2008.
[10] F. R. S. Thitchmarsh, The theory of the Riemann zeta-function, Clarendon Press, 1951