Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2010_16_2_a9, author = {Peter M. Kotelenez}, title = {Stochastic flows and signed measure valued stochastic partial differential equations}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {86--105}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a9/} }
TY - JOUR AU - Peter M. Kotelenez TI - Stochastic flows and signed measure valued stochastic partial differential equations JO - Teoriâ slučajnyh processov PY - 2010 SP - 86 EP - 105 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a9/ LA - en ID - THSP_2010_16_2_a9 ER -
Peter M. Kotelenez. Stochastic flows and signed measure valued stochastic partial differential equations. Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 86-105. http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a9/
[1] A. Amirdjanova, Topics in stochastic fluid dynamics: A vorticity approach, Ph.D. thesis, University of North Carolina at Chapel Hill, 2000
[2] A. Amirdjanova, “Vortex Theory Approach to Stochastic Hydrodynamics”, Mathematical and Computer Modelling, 45 (2007), 1319–1341
[3] A. Amirdjanova, J. Xiong, “Large Deviation Principle for a Stochastic Navier Stokes Equation in its Vorticity Form for a Two-Dimensional Incompressible Fluid”, Discrete and Continuous Dynamical Systems – Series B, 6:4 (2006), 651–666
[4] L. Arnold, R. F. Curtain, P. Kotelenez, Nonlinear Stochastic Evolution Equations in Hilbert Space, Report#17, Universität Bremen, Forschungsschwerpunkt Dynamische Systeme, 1980
[5] H. Bauer, Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie, de Gruyter, Berlin, 1968
[6] A. Dorogovtsev, Measure Valued Processes and Stochastic Flows, National Academy of Sciences of Ukraine, Mathematical Institute, Kiev, 2007 (in Russian)
[7] E. B. Dynkin, Markov processes, v. I, Springer Verlag, Berlin-Göttingen-Heidelberg, 1965
[8] P. Kotelenez, “A Stochastic Navier Stokes Equation for the Vorticity of a Twodimensional Fluid”, Ann. Applied Probab., 5:4 (1995), 1126–1160
[9] P. Kotelenez, “A Class of Quasilinear Stochastic Partial Differential Equations of McKean-Vlasov Type with Mass conservation”, Probab. Theory Relat. Fields, 102, 159–188
[10] P. Kotelenez, Stochastic Ordinary and Stochastic Partial Differential Equations: Transition from Microscopic to Macroscopic Equations, Springer-Verlag, Berlin-Heidelberg-New York, 2008
[11] P. Kotelenez, T. G. Kurtz, “Macroscopic Limit for Stochastic Partial Differential Equations of McKean-Vlasov Type”, Probab. Th. Rel. Fields, 146:1 (2010), 189
[12] P. Kotelenez, M. J. Leitman, J. A. Mann, “Correlated Brownian Motions and the Depletion Effect in Colloids”, J. Stat. Mech., 2009, P01054
[13] N. V. Krylov, Private Communication, 2005
[14] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge–New York–Port Chester–Melbourne–Sydney, 1990
[15] T. G. Kurtz, Jie Xiong, “Particle Representations for a Class of Nonlinear SPDEs”, Stochastic Process Appl., 83 (1999), 103–126
[16] P. Sh. Liptser, A. N. Shiryayev, Statistics of Random Processes, Nauka, Moscow, 1974 (in Russian)
[17] C. Marchioro, M. Pulvirenti, “Hydrodynamics and Vortex Theory”, Comm. Math. Phys., 84 (1982), 483–503
[18] M. Metivier, J. Pellaumail, Stochastic Integration, Adademic Press, New York, 1980
[19] B. Seadler, Ph.D. Thesis, Case Western Reserve University, Department of Mathematics, 2010 (in preparation)
[20] J. B. Walsh, “An Introduction to Stochastic Partial Differential Equations”, Ecole d’Eté de Probabilité de Saint Fleur XIV, Lecture Notes in Math., 1180, Springer, Berlin, 1986, 265–439