Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2010_16_2_a5, author = {Alexander Gnedin and Alexander Iksanov and Alexander Marynych}, title = {Limit theorems for the number of occupied boxes in the {Bernoulli} sieve}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {44--57}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a5/} }
TY - JOUR AU - Alexander Gnedin AU - Alexander Iksanov AU - Alexander Marynych TI - Limit theorems for the number of occupied boxes in the Bernoulli sieve JO - Teoriâ slučajnyh processov PY - 2010 SP - 44 EP - 57 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a5/ LA - en ID - THSP_2010_16_2_a5 ER -
%0 Journal Article %A Alexander Gnedin %A Alexander Iksanov %A Alexander Marynych %T Limit theorems for the number of occupied boxes in the Bernoulli sieve %J Teoriâ slučajnyh processov %D 2010 %P 44-57 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a5/ %G en %F THSP_2010_16_2_a5
Alexander Gnedin; Alexander Iksanov; Alexander Marynych. Limit theorems for the number of occupied boxes in the Bernoulli sieve. Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 44-57. http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a5/
[1] K. K. Anderson, K. B. Athreya, “A note on conjugate $\Phi$-variation and a weak limit theorem for the number of renewals”, Stat. Prob. Letters, 6 (1988), 151–154
[2] V. F. Araman, P. W. Glynn, “Tail asymptotics for the maximum of perturbed random walk”, Ann. Appl. Probab., 16 (2006), 1411–1431
[3] A. D. Barbour, “Univariate approximations in the infinite occupancy scheme”, Alea., 6 (2009), 415–433
[4] A. D. Barbour, A. V. Gnedin, “Regenerative compositions in the case of slow variation”, Stoch. Proc. Appl., 116 (2006), 1012–1047
[5] A. D. Barbour, A. V. Gnedin, “Small counts in the infinite occupancy scheme”, Electron. J. Probab., 14 (2009), 365–384
[6] N. H. Bingham, “Maxima of sums of random variables and suprema of stable processes”, Z. Wahrsch. verw. Geb., 26 (1973), 273–296
[7] L. V. Bogachev, A. V. Gnedin, Yu. V. Yakubovich, “On the variance of the number of occupied boxes”, Adv. Appl. Math., 40 (2008), 401–432
[8] M. Dutko, “Central limit theorems for infinite urn models”, Ann. Probab., 17 (1989), 1255–1263
[9] A. V. Gnedin, “The Bernoulli sieve”, Bernoulli, 10 (2004), 79–96
[10] A. Gnedin, B. Hansen, J. Pitman, “Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws”, Probability Surveys, 4 (2007), 146–171
[11] A. Gnedin, A. Iksanov, U. Roesler, “Small parts in the Bernoulli sieve”, Discrete Mathematics and Theoretical Computer Science, Proceedings Series, AI, 2008, 235–242
[12] A. Gnedin, A. Iksanov, P. Negadajlov, U. Roesler, “The Bernoulli sieve revisited”, Ann. Appl. Prob., 19 (2009), 1634–1655
[13] A. Gnedin, J. Pitman, M. Yor, “Asymptotic laws for compositions derived from transformed subordinators”, Ann. Probab., 34 (2006), 468–492
[14] A. Gut, Stopped Random Walks: Limit Theorems and Applications, Springer, New York, 2009
[15] L. de Haan, S. I. Resnick, “Conjugate $\Pi$-variation and process inversion”, Ann. Probab., 7 (1979), 1028–1035
[16] P. Hitczenko, J. Wesolowski, “Renorming divergent perpetuities”, Bernoulli, 2010 (to appear)
[17] H. K. Hwang, S. Janson, “Local limit theorems for finite and infinite urn models”, Ann. Probab., 36 (2008), 992–1022
[18] O. M. Iksanov, Perpetuities, Branching Random Walks and Self-Decomposability, Zirka, Kiev, 2007 (in Ukrainian)
[19] S. Karlin, “Central limit theorems for certain infinite urn schemes”, J. Math. Mech., 17 (1967), 373–401
[20] Sh. A. Mirakhmedov, “Randomized decomposable statistics in a generalized allocation scheme over a countable set of cells”, Diskretnaya Matematika, 1 (1989), 46–62
[21] S. T. Rachev, G. Samorodnitsky, “Limit laws for a stochastic process and random recursion arising in probabilistic modelling”, Adv. Appl. Prob., 27 (1995), 185–202
[22] M. S. Sgibnev, “Renewal theorem in the case of an infinite variance”, Siberian Math. J., 22 (1981), 787–796