Limit theorems for the number of occupied boxes in the Bernoulli sieve
Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 44-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Bernoulli sieve is a version of the classical ‘balls-in-boxes’ occupancy scheme, in which random frequencies of infinitely many boxes are produced by a multiplicative renewal process also known as the residual allocation model or stick-breaking. We focus on the number $K_n$ of boxes occupied by at least one of $n$ balls, as $n\to\infty$. A variety of limiting distributions for $K_n$ is derived from the properties of associated perturbed random walks. A refined approach based on the standard renewal theory allows us to remove a moment constraint and to cover the cases left open in previous studies.
Keywords: Infinite occupancy scheme, perturbed random walk, random environment, weak convergence.
@article{THSP_2010_16_2_a5,
     author = {Alexander Gnedin and Alexander Iksanov and Alexander Marynych},
     title = {Limit theorems for the number of occupied boxes in the {Bernoulli} sieve},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {44--57},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a5/}
}
TY  - JOUR
AU  - Alexander Gnedin
AU  - Alexander Iksanov
AU  - Alexander Marynych
TI  - Limit theorems for the number of occupied boxes in the Bernoulli sieve
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 44
EP  - 57
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a5/
LA  - en
ID  - THSP_2010_16_2_a5
ER  - 
%0 Journal Article
%A Alexander Gnedin
%A Alexander Iksanov
%A Alexander Marynych
%T Limit theorems for the number of occupied boxes in the Bernoulli sieve
%J Teoriâ slučajnyh processov
%D 2010
%P 44-57
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a5/
%G en
%F THSP_2010_16_2_a5
Alexander Gnedin; Alexander Iksanov; Alexander Marynych. Limit theorems for the number of occupied boxes in the Bernoulli sieve. Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 44-57. http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a5/

[1] K. K. Anderson, K. B. Athreya, “A note on conjugate $\Phi$-variation and a weak limit theorem for the number of renewals”, Stat. Prob. Letters, 6 (1988), 151–154

[2] V. F. Araman, P. W. Glynn, “Tail asymptotics for the maximum of perturbed random walk”, Ann. Appl. Probab., 16 (2006), 1411–1431

[3] A. D. Barbour, “Univariate approximations in the infinite occupancy scheme”, Alea., 6 (2009), 415–433

[4] A. D. Barbour, A. V. Gnedin, “Regenerative compositions in the case of slow variation”, Stoch. Proc. Appl., 116 (2006), 1012–1047

[5] A. D. Barbour, A. V. Gnedin, “Small counts in the infinite occupancy scheme”, Electron. J. Probab., 14 (2009), 365–384

[6] N. H. Bingham, “Maxima of sums of random variables and suprema of stable processes”, Z. Wahrsch. verw. Geb., 26 (1973), 273–296

[7] L. V. Bogachev, A. V. Gnedin, Yu. V. Yakubovich, “On the variance of the number of occupied boxes”, Adv. Appl. Math., 40 (2008), 401–432

[8] M. Dutko, “Central limit theorems for infinite urn models”, Ann. Probab., 17 (1989), 1255–1263

[9] A. V. Gnedin, “The Bernoulli sieve”, Bernoulli, 10 (2004), 79–96

[10] A. Gnedin, B. Hansen, J. Pitman, “Notes on the occupancy problem with infinitely many boxes: general asymptotics and power laws”, Probability Surveys, 4 (2007), 146–171

[11] A. Gnedin, A. Iksanov, U. Roesler, “Small parts in the Bernoulli sieve”, Discrete Mathematics and Theoretical Computer Science, Proceedings Series, AI, 2008, 235–242

[12] A. Gnedin, A. Iksanov, P. Negadajlov, U. Roesler, “The Bernoulli sieve revisited”, Ann. Appl. Prob., 19 (2009), 1634–1655

[13] A. Gnedin, J. Pitman, M. Yor, “Asymptotic laws for compositions derived from transformed subordinators”, Ann. Probab., 34 (2006), 468–492

[14] A. Gut, Stopped Random Walks: Limit Theorems and Applications, Springer, New York, 2009

[15] L. de Haan, S. I. Resnick, “Conjugate $\Pi$-variation and process inversion”, Ann. Probab., 7 (1979), 1028–1035

[16] P. Hitczenko, J. Wesolowski, “Renorming divergent perpetuities”, Bernoulli, 2010 (to appear)

[17] H. K. Hwang, S. Janson, “Local limit theorems for finite and infinite urn models”, Ann. Probab., 36 (2008), 992–1022

[18] O. M. Iksanov, Perpetuities, Branching Random Walks and Self-Decomposability, Zirka, Kiev, 2007 (in Ukrainian)

[19] S. Karlin, “Central limit theorems for certain infinite urn schemes”, J. Math. Mech., 17 (1967), 373–401

[20] Sh. A. Mirakhmedov, “Randomized decomposable statistics in a generalized allocation scheme over a countable set of cells”, Diskretnaya Matematika, 1 (1989), 46–62

[21] S. T. Rachev, G. Samorodnitsky, “Limit laws for a stochastic process and random recursion arising in probabilistic modelling”, Adv. Appl. Prob., 27 (1995), 185–202

[22] M. S. Sgibnev, “Renewal theorem in the case of an infinite variance”, Siberian Math. J., 22 (1981), 787–796