Stochastic dynamics via equations and inclusions in terms of mean derivatives and infinitesimal generators
Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 33-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a survey of recent results on stochastic differential equations and inclusions given in terms of mean derivatives and infinitesimal generators of stochastic processes. We pay the main attention to equations and inclusions on manifolds.
Keywords: Mean derivatives, infinitesimal generators, stochastic differential equations, stochastic differential inclusions, manifolds.
@article{THSP_2010_16_2_a4,
     author = {Yu. E. Gliklikh},
     title = {Stochastic dynamics via equations and inclusions in terms of mean derivatives and infinitesimal generators},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {33--43},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a4/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
TI  - Stochastic dynamics via equations and inclusions in terms of mean derivatives and infinitesimal generators
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 33
EP  - 43
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a4/
LA  - en
ID  - THSP_2010_16_2_a4
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%T Stochastic dynamics via equations and inclusions in terms of mean derivatives and infinitesimal generators
%J Teoriâ slučajnyh processov
%D 2010
%P 33-43
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a4/
%G en
%F THSP_2010_16_2_a4
Yu. E. Gliklikh. Stochastic dynamics via equations and inclusions in terms of mean derivatives and infinitesimal generators. Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 33-43. http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a4/

[1] S. V. Azarina, Yu. E. Gliklikh, “Differential inclusions with mean derivatives”, Dynamic Systems and Applications, 16:1 (2007), 49–71

[2] S. V. Azarina, Yu. E. Gliklikh, “Stochastic differential inclusions in terms of infinitesimal generators and mean derivatives”, Applicable Analysis, 88:1 (2009), 89–105

[3] S. V. Azarina, Yu. E. Gliklikh, “Stochastic differential equations and inclusions with mean derivatives relative to the past”, Int. J. of Difference Equations, 4:1 (2009), 27–41

[4] S. V. Azarina, Yu. E. Gliklikh, “Inclusions with mean derivatives for processes of geometric Bowninan motion type and their applications”, Seminar on Global and Stochastic Analysis, 2009, no. 4, 3–8 (in Russian)

[5] S. V. Azarina, Yu. E. Gliklikh, A. V. Obukhovskii, “Solvability of Langevin differential inclusions with set-valued diffusion terms on Riemannian manifolds”, Applicable Analysis, 86:9 (2007), 1105–1116

[6] S. V. Azarina, Yu. E. Gliklikh, A. V. Obukhovskii, “Mechanical systems with random perturbations on non-linear configuration spaces”, Proceedings of Voronezh State University, Series Phys. Math., 2008, no. 1, 205–221

[7] Ya. I. Belopolskaya, Yu. L. Daletskii, Stochastic Processes and Differential Geometry, Kluwer, Dordrecht, 1989

[8] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis, V. V. Obukhovskiĭ, Introduction to the Theory of Set-Valued Mappings and Differential Inclusions, KomKniga, Moscow, 2005 (in Russian)

[9] E. D. Conway, “Stochastic equations with discontinuous drift”, Trans. Amer. Math. Soc., 157:1 (1971), 235–245

[10] K. D. Elworthy, Stochastic Differential Equations on Manifolds, Cambridge University Press, Cambridge, 1982

[11] M. Emery, Stochastic Calculus on Manifolds, Springer, Berlin, 1989

[12] M. I. Freidlin, “On factorization of positive semi-definite matrices”, Probability Theory and Its Applications, 13:2 (1968), 375–378

[13] Yu. E. Gliklikh, Ordinary and Stochastic Differential Geometry as a Tool for Mathematical Physics, Kluwer, Dordrecht, 1996

[14] Yu. E. Gliklikh, Global Analysis in Mathematical Physics. Geometric and Stochastic Methods, Springer, New York, 1997

[15] Yu. E. Gliklikh, Global and Stochastic Analysis in Problems of Mathematical Physics, KomKniga, Moscow, 2005 (in Russian)

[16] Yu. E. Gliklikh, “Stochastic differential inclusions with mean derivatives on non-compact manifolds”, Seminar on global and stochastic analysis, Voronezh University, 2008, no. 3, 12–30

[17] Yu. E. Gliklikh, “On relations between infinitesimal generators and mean derivatives of stochastic processes on manifolds”, Proceedings of Voronezh State University, Series Physics Mathematics, 2008, no. 2, 97–102

[18] X. He, “A probabilistic method for Navier–Stokes vorticies”, J. Appl. Probab., 2001, 1059–1066

[19] P. A. Meyer, “A differential geometric formalism for the Itô calculus”, Lecture Notes in Mathematics, 851, 1981, 256–270

[20] E. Nelson, “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Rev., 150:4 (1966), 1079–1085

[21] E. Nelson, Dynamical Theory of Brownian Motion, Princeton Univ. Press, Princeton, 1967

[22] E. Nelson, Quantum Fluctuations, Princeton Univ. Press, Princeton, 1985

[23] L. Schwartz, Semimartingales and Their Stochastic Calculus on Manifolds, Montreal University Press, Montreal, 1984