Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2010_16_2_a2, author = {V. V. Buldygin and O. A. Tymoshenko}, title = {On the exact order of growth of solutions of stochastic differential equations with time-dependent coefficients}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {12--22}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a2/} }
TY - JOUR AU - V. V. Buldygin AU - O. A. Tymoshenko TI - On the exact order of growth of solutions of stochastic differential equations with time-dependent coefficients JO - Teoriâ slučajnyh processov PY - 2010 SP - 12 EP - 22 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a2/ LA - en ID - THSP_2010_16_2_a2 ER -
%0 Journal Article %A V. V. Buldygin %A O. A. Tymoshenko %T On the exact order of growth of solutions of stochastic differential equations with time-dependent coefficients %J Teoriâ slučajnyh processov %D 2010 %P 12-22 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a2/ %G en %F THSP_2010_16_2_a2
V. V. Buldygin; O. A. Tymoshenko. On the exact order of growth of solutions of stochastic differential equations with time-dependent coefficients. Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 12-22. http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a2/
[1] V. V. Budygin, O. A. Tymoshenko, “On the asymptotic stability of stochastic differential equations”, Naukovi Visti NTUU “KPI”, 2007, no. 1, 126–129
[2] V. V. Budygin, O. A. Tymoshenko, “The exact order of grouth of solutions of stochastic differential equations”, Naukovi Visti NTUU “KPI”, 2008, no. 6, 127–132
[3] V. V. Buldygin, O. I. Klesov, J. G. Stainebach, “Properties of a subclass of Avakumović functions and their generalized inverses”, Ukrain. Mat. Zh., 54 (2002), 179–206
[4] V. V. Buldygin, O. I. Klesov, J. G. Stainebach, “On some properties of asymptotically quasi-inverse functions and their applications. II”, Theory Probab. Math. Statist., 71 (2005), 37–52
[5] V. V. Buldygin, O. I. Klesov, J. G. Stainebach, “The PRV property of functions and the asymptotic behaviour of solutions of stochastic differential equations”, Theory Probab. Math. Statist., 72 (2006), 11–25
[6] V. V. Buldygin, O. I. Klesov, J. G. Steinebach, “PRV property and the ${\boldsymbol\varphi}$–asymptotic behaviour of solutions of stochastic differential equations”, Lithuanian Math. J., 2007, no. 4, 1–21
[7] V. V. Budygin, O. I. Klesov, J. G. Steinebach, O. A. Tymoshenko, “On the ${\boldsymbol\varphi}$-asymptotic behaviour of solutions of stochastic differential equations”, Theory Stoch. Process., 14 (2008), 11–29
[8] I. I. Gikhman, A. V. Skorokhod, Stochastic Differential Equations, Springer, Berlin, 1972
[9] G. Keller, G. Kersting, U. Rösler, “On the asymptotic behaviour of solutions of stochastic differential equations”, Z. Wahrsch. verw. Geb., 68 (1984), 163–184
[10] E. Seneta, Regularly Varying Functions, Springer, Berlin, 1976