On the exact order of growth of solutions of stochastic differential equations with time-dependent coefficients
Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 12-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the exact order of growth of the solution of the stochastic differential equation $d\eta (t)=g \left(\eta (t)\right)\varphi (t)dt +\sigma \left(\eta (t)\right)\theta (t)dw(t),$ $X(0)=b,$ where $w$ is the standard Wiener process, $b$ is a nonrandom positive constant, $g$, $\sigma$ are continuous positive functions, and $\varphi$ and $\theta$ are real continuous functions such that a continuous solution $\eta$ exists. As an application of these results, we discuss the problem of asymptotic equivalence for solutions of stochastic differential equations.
Keywords: Exact order of growth
Mots-clés : equivalent solutions.
@article{THSP_2010_16_2_a2,
     author = {V. V. Buldygin and O. A. Tymoshenko},
     title = {On the exact order of growth of solutions of stochastic differential equations with time-dependent coefficients},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {12--22},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a2/}
}
TY  - JOUR
AU  - V. V. Buldygin
AU  - O. A. Tymoshenko
TI  - On the exact order of growth of solutions of stochastic differential equations with time-dependent coefficients
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 12
EP  - 22
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a2/
LA  - en
ID  - THSP_2010_16_2_a2
ER  - 
%0 Journal Article
%A V. V. Buldygin
%A O. A. Tymoshenko
%T On the exact order of growth of solutions of stochastic differential equations with time-dependent coefficients
%J Teoriâ slučajnyh processov
%D 2010
%P 12-22
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a2/
%G en
%F THSP_2010_16_2_a2
V. V. Buldygin; O. A. Tymoshenko. On the exact order of growth of solutions of stochastic differential equations with time-dependent coefficients. Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 12-22. http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a2/

[1] V. V. Budygin, O. A. Tymoshenko, “On the asymptotic stability of stochastic differential equations”, Naukovi Visti NTUU “KPI”, 2007, no. 1, 126–129

[2] V. V. Budygin, O. A. Tymoshenko, “The exact order of grouth of solutions of stochastic differential equations”, Naukovi Visti NTUU “KPI”, 2008, no. 6, 127–132

[3] V. V. Buldygin, O. I. Klesov, J. G. Stainebach, “Properties of a subclass of Avakumović functions and their generalized inverses”, Ukrain. Mat. Zh., 54 (2002), 179–206

[4] V. V. Buldygin, O. I. Klesov, J. G. Stainebach, “On some properties of asymptotically quasi-inverse functions and their applications. II”, Theory Probab. Math. Statist., 71 (2005), 37–52

[5] V. V. Buldygin, O. I. Klesov, J. G. Stainebach, “The PRV property of functions and the asymptotic behaviour of solutions of stochastic differential equations”, Theory Probab. Math. Statist., 72 (2006), 11–25

[6] V. V. Buldygin, O. I. Klesov, J. G. Steinebach, “PRV property and the ${\boldsymbol\varphi}$–asymptotic behaviour of solutions of stochastic differential equations”, Lithuanian Math. J., 2007, no. 4, 1–21

[7] V. V. Budygin, O. I. Klesov, J. G. Steinebach, O. A. Tymoshenko, “On the ${\boldsymbol\varphi}$-asymptotic behaviour of solutions of stochastic differential equations”, Theory Stoch. Process., 14 (2008), 11–29

[8] I. I. Gikhman, A. V. Skorokhod, Stochastic Differential Equations, Springer, Berlin, 1972

[9] G. Keller, G. Kersting, U. Rösler, “On the asymptotic behaviour of solutions of stochastic differential equations”, Z. Wahrsch. verw. Geb., 68 (1984), 163–184

[10] E. Seneta, Regularly Varying Functions, Springer, Berlin, 1976