On the asymptotics of moments of linear random recurrences
Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 106-119

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new method of analyzing the asymptotics of moments of certain linear random recurrences which is based on the technique of iterative functions. By using the method, we show that the moments of the number of collisions and the absorption time in the Poisson–Dirichlet coalescent behave like the powers of the "log star" function which grows slower than any iteration of the logarithm, and thereby we prove a weak law of large numbers. Finally, we discuss merits and limitations of the method and give several examples related to beta coalescents, recursive algorithms, and random trees.
Keywords: linear recurrence.
Mots-clés : Moments, Poisson–Dirichlet coalescent
@article{THSP_2010_16_2_a10,
     author = {Alexander Marynych},
     title = {On the asymptotics of moments of linear random recurrences},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {106--119},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a10/}
}
TY  - JOUR
AU  - Alexander Marynych
TI  - On the asymptotics of moments of linear random recurrences
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 106
EP  - 119
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a10/
LA  - en
ID  - THSP_2010_16_2_a10
ER  - 
%0 Journal Article
%A Alexander Marynych
%T On the asymptotics of moments of linear random recurrences
%J Teoriâ slučajnyh processov
%D 2010
%P 106-119
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a10/
%G en
%F THSP_2010_16_2_a10
Alexander Marynych. On the asymptotics of moments of linear random recurrences. Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 106-119. http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a10/