Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2010_16_2_a10, author = {Alexander Marynych}, title = {On the asymptotics of moments of linear random recurrences}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {106--119}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a10/} }
Alexander Marynych. On the asymptotics of moments of linear random recurrences. Teoriâ slučajnyh processov, Tome 16 (2010) no. 2, pp. 106-119. http://geodesic.mathdoc.fr/item/THSP_2010_16_2_a10/
[1] V. Bruhn, Eine Methode zur asymptotischen Behandlungeiner Klasse von Rekursionsgleichungen mit einer Anwendung in der stochastischen Analyse des Quicksort-Algorithmus, Dissertation, Christian-Albrechts-UniversitP̈{a}t zu Kiel, 1996
[2] B. van Cutsem, B. Ycart, “Renewal-type behaviour of absorption times in Markov chains”, Adv. Appl. Prob., 26 (1994), 988–1005
[3] J.-F. Delmas, J.-S. Dhersin, A. Siri-Jegousse, “Asymptotic results on the length of coalescent trees”, Ann. Appl. Probab., 18 (2008), 997–-1025
[4] O. Devillers, “Randomization yields simple $O(n{\log}^* n)$ algorithms for difficult $\Omega(n)$ problems”, Internat. J. Comput. Geom. Appl., 2 (1992), 621–635
[5] M. Drmota, Random Trees: An Interplay between Combinatorics and Probability, Springer, Berlin, 2009
[6] M. Drmota, A. Iksanov,M. Moehle, U. Roesler, “Asymptotic results concerning the total branch length of the Bolthausen–Sznitman coalescent”, Stoch. Process. Appl., 117 (2007), 1404–1421
[7] M. Drmota, A. Iksanov, M. Moehle, U. Roesler, “A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree”, Random Struct. Algorithms, 34 (2009), 319–336
[8] P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cambridge, 2008
[9] A. V. Gnedin, “The Bernoulli sieve”, Bernoulli, 10 (2004), 79–96
[10] A. Gnedin, A. Iksanov, M. Möhle, “On asymptotics of exchangeable coalescents with multiple collisions”, J. Appl. Probab., 45 (2008), 1186–1195
[11] A. Gnedin, A. Iksanov, P. Negadajlov, U. Roesler, “The Bernoulli sieve revisited”, Ann. Appl. Prob., 19 (2009), 1634–1655
[12] A. Gnedin, Y. Yakubovich, “On the number of collisions in $\Lambda$-coalescents”, Electron. J. Probab., 12 (2007), 1547–1567
[13] B. Haas, G. Miermont, “Self-similar scaling limits of non-increasing Markov chains”, Bernoulli, 2010 (to appear)
[14] C. R. Hoar, “Quicksort”, The Computer Journal, 5:1 (1962), 10–16
[15] D. H. Greene, D. E. Knuth, Mathematics for the analysis of algorithms, Burkhäuser, Basel, 1990
[16] A. Iksanov, A. Marynych, M. Möhle, “On the number of collisions in beta(2,b)-coalescents”, Bernoulli, 15 (2009), 829–845
[17] A. Iksanov, M. Möhle, “On the number of jumps of random walks with a barrier”, Adv. Appl. Probab., 40 (2008), 206–228
[18] A. Iksanov, P. Negadajlov, “On the number of zero increments of a random walk with a barrier”, Discrete Math. Theor. Comput. Sci. Proceedings Series, AI, 2008, 247–254
[19] R. M. Karp, “Probabilistic recurrence relations”, Journal of the Association for Computer Machinery, 41 (1994), 1136–1150
[20] H. Kesten, “The number of distinguishable alleles according to the Ohta–Kimura model of neutral mutation”, J. Math. Biol., 10 (1980), 167–187
[21] H. Mahmoud, Evolution of random search trees, Wiley, New York, 1992
[22] A. Meir, J. W. Moon, “Cutting down recursive trees”, Math. Biosci., 21 (1974), 173–181
[23] M. Möhle, “Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson-Dirichlet coalescent”, Stoch. Process. Appl., 120 (2010), 2159–2173
[24] R. Neininger, L. Rüschendorf, “On the contraction method with degenerate limit equation”, Ann. Probab., 32 (2004), 2838–2856
[25] A. Panholzer, “Destruction of recursive trees”, Mathematics and Computer Science III, Birkhäuser, Basel, 2004, 267–280
[26] A. Panholzer, “Cutting down very simple trees”, Quaest. Math., 29 (2006), 211–227
[27] U. Rösler, “A limit theorem for “Quicksort””, RAIRO, Inform. Theor. Appl., 25 (1991), 85–100
[28] U. Rösler, “On the analysis of stochastic divide and conquer algorithms”, Algorithmica, 29 (2001), 238–261
[29] S. Sagitov, “Convergence to the coalescent with simultaneous multiple merges”, J. Appl. Prob., 40 (2003), 839–854
[30] R. Sedgewick, “The analysis of Quicksort Programs”, Acta Informatika, 7(4) (1977), 327–355