Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2010_16_1_a8, author = {B. Laquerri\`ere and N. Privault}, title = {Deviation inequallities for exponential jump-diffusion processes}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {67--72}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a8/} }
B. Laquerrière; N. Privault. Deviation inequallities for exponential jump-diffusion processes. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 67-72. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a8/
[1] C. Ané, M. Ledoux, “On logarithmic {S}obolev inequalities for continuous time random walks on graphs”, Probab. Theory Related Fields, 116:4 (2000), 573–602
[2] J. C. Breton, N. Privault, “Convex comparison inequalities for exponential jump-diffusion processes”, Communications on Stochastic Analysis, 1 (2007), 263–277
[3] S. Cohen, T. Mikosch, “Tail behavior of random products and stochastic exponentials”, Stochastic Process. Appl., 118:3 (2008), 333–345
[4] Th. Klein, Y. Ma, N. Privault, “Convex concentration inequalities via forward/backward stochastic calculus”, Electron. J. Probab., 11:20 (2006), 27
[5] L. Wu., “A new modified logarithmic {S}obolev inequality for {P}oisson point processes and several applications”, Probab. Theory Related Fields, 118:3 (2000), 427–438