Deviation inequallities for exponential jump-diffusion processes
Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 67-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

We clarify the connection between diffusion processes and partial differential equations of the parabolic type. The emphasis is on degenerate parabolic equations. These equations are a generalization of the classical Kolmogorov equation of diffusion with inertia which may be treated as the Fokker-Planck-Kolmogorov equations for the respectively degenerate diffusion processes. The basic results relating to the fundamental solution and the correct solvability of the Cauchy problem are presented.
Keywords: Deviation inequalities, exponential jump-diffusion processes, concentration inequalities, forward/backward stochastic calculus.
@article{THSP_2010_16_1_a8,
     author = {B. Laquerri\`ere and N. Privault},
     title = {Deviation inequallities for exponential jump-diffusion processes},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {67--72},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a8/}
}
TY  - JOUR
AU  - B. Laquerrière
AU  - N. Privault
TI  - Deviation inequallities for exponential jump-diffusion processes
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 67
EP  - 72
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a8/
LA  - en
ID  - THSP_2010_16_1_a8
ER  - 
%0 Journal Article
%A B. Laquerrière
%A N. Privault
%T Deviation inequallities for exponential jump-diffusion processes
%J Teoriâ slučajnyh processov
%D 2010
%P 67-72
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a8/
%G en
%F THSP_2010_16_1_a8
B. Laquerrière; N. Privault. Deviation inequallities for exponential jump-diffusion processes. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 67-72. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a8/

[1] C. Ané, M. Ledoux, “On logarithmic {S}obolev inequalities for continuous time random walks on graphs”, Probab. Theory Related Fields, 116:4 (2000), 573–602

[2] J. C. Breton, N. Privault, “Convex comparison inequalities for exponential jump-diffusion processes”, Communications on Stochastic Analysis, 1 (2007), 263–277

[3] S. Cohen, T. Mikosch, “Tail behavior of random products and stochastic exponentials”, Stochastic Process. Appl., 118:3 (2008), 333–345

[4] Th. Klein, Y. Ma, N. Privault, “Convex concentration inequalities via forward/backward stochastic calculus”, Electron. J. Probab., 11:20 (2006), 27

[5] L. Wu., “A new modified logarithmic {S}obolev inequality for {P}oisson point processes and several applications”, Probab. Theory Related Fields, 118:3 (2000), 427–438