The Fokker–Planck–Kolmogorov equations for some degenerate diffusion processes
Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 57-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We clarify the connection between diffusion processes and partial differential equations of the parabolic type. The emphasis is on degenerate parabolic equations. These equations are a generalization of the classical Kolmogorov equation of diffusion with inertia which may be treated as the Fokker-Planck-Kolmogorov equations for the respectively degenerate diffusion processes. The basic results relating to the fundamental solution and the correct solvability of the Cauchy problem are presented.
Keywords: transition density to a process, degenerate parabolic equation, fundamental solution, Cauchy problem.
Mots-clés : Diffusion process, Fokker–Planck–Kolmogorov equation
@article{THSP_2010_16_1_a7,
     author = {S. D. Ivasishen and I. P. Medynsky},
     title = {The {Fokker{\textendash}Planck{\textendash}Kolmogorov} equations for some degenerate diffusion processes},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {57--66},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a7/}
}
TY  - JOUR
AU  - S. D. Ivasishen
AU  - I. P. Medynsky
TI  - The Fokker–Planck–Kolmogorov equations for some degenerate diffusion processes
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 57
EP  - 66
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a7/
LA  - en
ID  - THSP_2010_16_1_a7
ER  - 
%0 Journal Article
%A S. D. Ivasishen
%A I. P. Medynsky
%T The Fokker–Planck–Kolmogorov equations for some degenerate diffusion processes
%J Teoriâ slučajnyh processov
%D 2010
%P 57-66
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a7/
%G en
%F THSP_2010_16_1_a7
S. D. Ivasishen; I. P. Medynsky. The Fokker–Planck–Kolmogorov equations for some degenerate diffusion processes. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 57-66. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a7/

[1] A. N. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104 (1931), 415–458

[2] E. B. Dynkin, Markov Processes, v. I, II, Springer, Berlin, 1965

[3] N. I. Portenko, Generalized Diffusion Processes, Amer. Math. Soc., Providence, RI, 1990

[4] A. Einstein, Investigations on the Theory of the Brownian Movement, Dover, New York, 1956

[5] A. Einstein, M. von Smoluchowski, Brownsche Bewegung, H. Dentsch, Frankfurt am Main, 1997

[6] G. E. Uhlenbeck, L. S. Ornstein, “On the theory of Brownian motion”, Phys. Rev., 36 (1930), 823–841

[7] A. N. Kolmogoroff, “Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)”, Math. Ann., 35 (1934), 116–117

[8] A. Pascucci, “Kolmogorov Equations in Physics and in Finance”, Progress in Nonlinear Differential Equations and their Applications, 63, Birkhäuser, Basel, 2005, 313–324

[9] S. D. Eidelman, S. D. Ivasyshen, A. N. Kochubei, Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type, Birkhäuser, Basel, 2004

[10] A. Pascucci, S. Polidoro, E. Lanconelli, “Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance”, Nonlinear Problems in Mathematical Physics and Related Topics, v. II, 2002, 243–265

[11] J. L. Doob, Stochastic Processes, Wiley, New York, 1953

[12] I. M. Sonin, “On a class of degenerate diffusion processes”, Theor. Probab. Appl., 12:3 (1967), 490–496