Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2010_16_1_a4, author = {Shizan Fang}, title = {On the behaviour of metrics $H_s$ on loop groups}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {39--43}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a4/} }
Shizan Fang. On the behaviour of metrics $H_s$ on loop groups. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 39-43. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a4/
[1] T. R. Carson, Logarithmic Sobolev inequalities for free loop groups, Ph.D. thesis, University of California, San Diego, 1997
[2] B. K. Driver, “Integration by parts and Quasi-invariance for heat kernel measures on loop groups”, J. Funct. Analysis, 149 (1997), 470–547
[3] B. K. Driver, T. Lohrenz, “Logarithmic Sobolev inequalities for pinned loop groups”, J. Funct. Anal., 140 (1996), 381–448
[4] S. Fang, “Integration by parts formula and Logarithmic Sobolev inequality on the path space over loop groups”, Annals of probability, 27 (1999), 664–683
[5] S. Fang, “Metrics ${\mathcal H}_s$ and behaviour as $s\downarrow 1/2$ on loop groups”, J. Funct. Anal., 213 (2004), 440–465
[6] S. Freed, “The geometry of loop groups”, J. Differential Geom., 28 (1988), 223–276
[7] L. Gross, “Abstract Wiener space”, Proceeding of the fifth Berkeley symposium on Mathematical Statistics and Probability, 1965
[8] Y. Inahama, “Logarithmic Sobolev inequality on free loop groups for heat kernel measures associated with the general Sobolev spaces”, J. Funct. Anal., 179 (2001), 170–213
[9] Y. Inahama, “Convergence of finite dimensional distributions of heat kernel measures on loop groups”, J. Funct. Anal., 198 (2003), 311–340
[10] P. Malliavin, “Hypoellipticity in infinite dimension”, Diffusion processes and related problems in Analysis, v. I, ed. M. Pinsky, Birkhaüser 1991, Chicago, 1989, 17–33
[11] K. T. Sturm, M. K. Von Renesse, “Transport inequalities, Gradient estimates, Entropy and Ricci curvature”, Comm. Pure Appl. Math., 68 (2005), 923–940