On the behaviour of metrics $H_s$ on loop groups
Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 39-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The heat measures with respect to metric $H_s$ on loop groups were introduced by P. Malliavin; its behaviour as $s\downarrow 1/2$ of finite dimensional distributions was studied by Y. Inahama [J. Funct. Anal., 198 (2003), p. 311-340]. In this note, we shall transfer this problem to the long time behaviour of diffusion processes. We conclude the result by using a metric equivalent form for the lower bound of Ricci tensors.
Keywords: Loop groups, heat measures, metric $H_s$, Ricci tensor, Wasserstein distance.
@article{THSP_2010_16_1_a4,
     author = {Shizan Fang},
     title = {On the behaviour of metrics $H_s$ on loop groups},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {39--43},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a4/}
}
TY  - JOUR
AU  - Shizan Fang
TI  - On the behaviour of metrics $H_s$ on loop groups
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 39
EP  - 43
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a4/
LA  - en
ID  - THSP_2010_16_1_a4
ER  - 
%0 Journal Article
%A Shizan Fang
%T On the behaviour of metrics $H_s$ on loop groups
%J Teoriâ slučajnyh processov
%D 2010
%P 39-43
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a4/
%G en
%F THSP_2010_16_1_a4
Shizan Fang. On the behaviour of metrics $H_s$ on loop groups. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 39-43. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a4/

[1] T. R. Carson, Logarithmic Sobolev inequalities for free loop groups, Ph.D. thesis, University of California, San Diego, 1997

[2] B. K. Driver, “Integration by parts and Quasi-invariance for heat kernel measures on loop groups”, J. Funct. Analysis, 149 (1997), 470–547

[3] B. K. Driver, T. Lohrenz, “Logarithmic Sobolev inequalities for pinned loop groups”, J. Funct. Anal., 140 (1996), 381–448

[4] S. Fang, “Integration by parts formula and Logarithmic Sobolev inequality on the path space over loop groups”, Annals of probability, 27 (1999), 664–683

[5] S. Fang, “Metrics ${\mathcal H}_s$ and behaviour as $s\downarrow 1/2$ on loop groups”, J. Funct. Anal., 213 (2004), 440–465

[6] S. Freed, “The geometry of loop groups”, J. Differential Geom., 28 (1988), 223–276

[7] L. Gross, “Abstract Wiener space”, Proceeding of the fifth Berkeley symposium on Mathematical Statistics and Probability, 1965

[8] Y. Inahama, “Logarithmic Sobolev inequality on free loop groups for heat kernel measures associated with the general Sobolev spaces”, J. Funct. Anal., 179 (2001), 170–213

[9] Y. Inahama, “Convergence of finite dimensional distributions of heat kernel measures on loop groups”, J. Funct. Anal., 198 (2003), 311–340

[10] P. Malliavin, “Hypoellipticity in infinite dimension”, Diffusion processes and related problems in Analysis, v. I, ed. M. Pinsky, Birkhaüser 1991, Chicago, 1989, 17–33

[11] K. T. Sturm, M. K. Von Renesse, “Transport inequalities, Gradient estimates, Entropy and Ricci curvature”, Comm. Pure Appl. Math., 68 (2005), 923–940