An extension of the It\^o integral: Toward a general theory of stochastic integration
Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 17-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the class of instantly independent stochastic processes, which serves as the counterpart of the Itô theory of stochastic integration. This class provides a new approach to anticipating stochastic integration. The evaluation points for an adapted stochastic process and an instantly independent stochastic process are taken to be the left endpoint and the right endpoint, respectively. We present some new results on Itô's formula and stochastic differential equations.
Keywords: Brownian motion, adapted stochastic process, Itô integral, Hitsuda-Skorokhod integral, anticipating, instantly independent stochastic processes, evaluation points, stochastic integral, stochastic differential equations.
Mots-clés : filtration, Itô's formula
@article{THSP_2010_16_1_a2,
     author = {Wided Ayed and Hui-Hsiung Kuo},
     title = {An extension of the {It\^o} integral: {Toward} a general theory of stochastic integration},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {17--28},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a2/}
}
TY  - JOUR
AU  - Wided Ayed
AU  - Hui-Hsiung Kuo
TI  - An extension of the It\^o integral: Toward a general theory of stochastic integration
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 17
EP  - 28
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a2/
LA  - en
ID  - THSP_2010_16_1_a2
ER  - 
%0 Journal Article
%A Wided Ayed
%A Hui-Hsiung Kuo
%T An extension of the It\^o integral: Toward a general theory of stochastic integration
%J Teoriâ slučajnyh processov
%D 2010
%P 17-28
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a2/
%G en
%F THSP_2010_16_1_a2
Wided Ayed; Hui-Hsiung Kuo. An extension of the It\^o integral: Toward a general theory of stochastic integration. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 17-28. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a2/

[1] W. Ayed, H.-H. Kuo, “An extension of the Itô integral”, Communications on Stochastic Analysis, 2:3 (2008), 323–333

[2] M. A. Berger, V. J. Mizel, “An extension of the stochastic integral”, Annals of Probability, 10 (1980), 435–450

[3] R. Buckdahn, Skorokhod's integral and linear stochastic differential equations, 1987

[4] R. Buckdahn, “Anticipating linear stochastic differential equations”, Lecture Notes in Control and Inform. Sci., 136, 1989, 18–23

[5] A. A. Dorogovtsev, Infinite-dimensional Stochastic Analysis, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1990 (in Russian)

[6] A. Grorud, D. Nualart, M. Sanz-Solé, “Hilbert-valued anticipating stochastic differential equations”, Ann. Inst. H. Poincaré Probab. Statist., 30 (1994), 133–161

[7] M. Hitsuda, “Formula for Brownian partial derivatives”, Second Japan-USSR Symp. Probab. Th., v. 2, 1972, 111–114

[8] K. Itô, “Multiple Wiener integral”, J. Math. Soc. Japan, 3 (1951), 157–169

[9] K. Itô, “Extension of stochastic integrals”, Proc. Intern. Symp. on Stochastic Differential Equations, ed. K. Itô, Kinokuniya, 1978, 95–109

[10] A. Kohatsu-Higa, J. A. Léon, “Anticipating stochastic differential equations of Stratonovich type”, Appl. Math. Optim., 36 (1997), 263–289

[11] I. Kubo, S. Takenaka, “Calculus on Gaussian white noise III”, Proc. Japan Acad., 57A (1981), 433–437

[12] H.-H. Kuo, White Noise Distribution Theory, CRC Press, Boca Raton, 1996

[13] H.-H. Kuo, Introduction to Stochastic Integration, Universitext (UTX), Springer, New York, 2006

[14] H.-H. Kuo, J. Potthoff, “Anticipating stochastic integrals and stochastic differential equations”, White noise analysis, World Sci. Publ., River Edge, NJ, 1990, 256–273

[15] H.-H. Kuo, A. Russek, “White noise approach to stochastic integration”, J. Multivariate Anal., 24 (1988), 218–236

[16] J. A. Léon, P. Protter, “Some formulas for anticipative Girsanov transformations”, Chaos expansions, multiple Wiener–Itô integrals and their applications, Probab. Stochastics Ser., CRC Press, Boca Raton, FL, 1994, 267–291

[17] A. Millet, D. Nualart, M. Sanz, “Small perturbations for quasilinear anticipating stochastic differential equations”, Random partial differential equations, Internat. Ser. Numer. Math., 102, Birkhäuser, Basel, 1991, 149–157

[18] Yu. Mishura, G. Shevchenko, “Approximate solutions to anticipative stochastic differential equations”, Statist. Probab. Lett., 78 (2008), 60–66

[19] D. Nualart, E. Pardoux, “Stochastic calculus with anticipating integrands”, Probab. Theory Related Fields, 78 (1988), 535–581

[20] N. Obata, White Noise Calculus and Fock Space, Lecture Notes in Math., 1577, Springer-Verlag, 1994

[21] D. Ocone, “Anticipating stochastic calculus and applications”, White noise analysis, World Sci. Publ., River Edge, NJ, 1990, 298–314

[22] D. Ocone, E. Pardoux, “A generalized Itô-Ventzell formula. Application to a class of anticipating stochastic differential equations”, Ann. Inst. H. Poincaré Probab. Statist., 25 (1989), 39–71

[23] B. Øksendal, T. Zhang, “The general linear stochastic Volterra equation with anticipating coefficients”, Stochastic Analysis and Applications, World Sci. Publ., River Edge, NJ, 1996, 343–366

[24] E. Pardoux, P. Protter, “Stochastic Volterra equations with anticipating coefficients”, Ann. Probab., 18 (1990), 1635–1655

[25] N. Privault, “Skorohod stochastic integration with respect to non-adapted processes on Wiener space”, Stochastics Stochastics Rep., 65 (1998), 13–39

[26] M. Redfern, “White noise approach to multiparameter stochastic integration”, J. Multivariate Anal., 37 (1991), 1–23

[27] F. Russo, P. Vallois, “Anticipative Stratonovich equation via Zvonkin method”, Stochastic Processes and Related Topics (Siegmundsberg, 1994), Stochastics Monogr., 10, Gordon and Breach, Yverdon, 1996, 129–138

[28] Theory Probab. Math. Statist., 72, 167–175

[29] A. V. Skorokhod, “On a generalization of a stochastic integral”, Theory Probab. Appl., 20 (1975), 219–233