Voir la notice de l'article provenant de la source Math-Net.Ru
@article{THSP_2010_16_1_a14, author = {N. M. Zinchenko}, title = {Strong invariance principle for a superposition of random processes}, journal = {Teori\^a slu\v{c}ajnyh processov}, pages = {130--138}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a14/} }
N. M. Zinchenko. Strong invariance principle for a superposition of random processes. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 130-138. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a14/
[1] I. Berkes, H. Dehling, D. Dobrovski, W. Philipp, “A strong approximation theorem for sums of random vectors in domain of attraction to a stable law”, Acta Math. Hung., 48:1-2 (1986), 161–172
[2] A. V. Bulinski, A. P. Shashkin, Limit Theorems for Associated Random Fields and Related Systems, Fizmatlit, Moscow, 2008 (in Russian)
[3] M. Csörgő, P. Révész, Strong Approximation in Probability and Statistics, Acad. Press., New York, 1981
[4] M. Csörgő, L. Horváth, Weighted Approximation in Probability and Statistics, Wiley, New York, 1993
[5] I. I. Gikhman, A. V. Skorokhod, The Theory of Stochastic Processes, v. II, Springer, Berlin, 1975
[6] Z. Y. Lin, C. R. Lu, Strong Limit Theorems, Kluwer Science Press, Hong Kong, 1992
[7] G. Morrow, “Invariance principle for Gaussian sequences”, Z. Wahr. verw. Geb., 52 (1980), 115–126
[8] W. Philipp, “Invariance principle for independent and weakly dependent r.v.”, Dependence in Probability and Statistics: A Survey of Recent Results, eds. E. Eberlein and M.S.Taqqu, Birkhäuser, Boston, 1986
[9] D. Silvestrov, Limit Theorems for Randomly Stopped Stochastic Processes, Springer, London, 2004
[10] A. V. Skorokhod, Studies in the Theory of Random Processes, Kiev Univ., Kiev, 1961 (in Russian)
[11] V. Strassen, “An invariance principle for the LIL”, Z. Wahr. verw. Geb., 3 (1964), 211–226
[12] V. Strassen, “Almost sure behavior for sums of independent r.v. and martingales”, Pros. 5th Berkeley Symp., 2 (1965), 315–343
[13] W. Whitt, Stochastic-Processes Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues, Springer, New York, 2002
[14] W. Wu, “Strong invariance principle for dependent random variables”, Annals of Probability, 35:6, 2294–2330
[15] N. Zinchenko, “The strong invariance principle for sums of r.v. in the domain of attraction of a stable law”, Teor. Verojatnost. i Primen., 30:1 (1985), 131–135
[16] N. Zinchenko, “Asymptotics of increments of the stable processes with the jumps of one sign”, Theory Probab. Appl., 32 (1987)
[17] N. Zinchenko, “The Skorokhod representation and strong invariance principle”, Teor. Imovirnost. ta Mat. Statyst., 60 (2000), 51–63
[18] N. Zinchenko, “The strong invariance principle for renewal and randomly stopped processes”, Theory of Stoch. Processes, 13(29):4 (2007), 233–245
[19] N. Zinchenko, M. Safonova, “Erdös–Renyi type law for random sums with applications to claim amount process”, Journal of Numerical and Applied Mathematics, 96:1 (2008), 246–264
[20] H. Yu, “A strong invariance principle for associated sequences”, Annals of Probability, 24:4 (1996), 2079–2097