Strong invariance principle for a superposition of random processes
Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 130-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

The strong invariance principle (SIP) is proved for a superposition of random processes $S(N(t))$ under rather general assumptions on $S(t)$ and $N(t)$. As a consequence, a number of SIP-type results are obtained for random sums and used to investigate their rate of growth and fluctuation of increments.
Keywords: Invariance principle, randomly stopped process, Lévy process, renewal process, stable process, stationary sequences, risk process, rate of growth.
Mots-clés : domain of attraction
@article{THSP_2010_16_1_a14,
     author = {N. M. Zinchenko},
     title = {Strong invariance principle for a superposition of random processes},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {130--138},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a14/}
}
TY  - JOUR
AU  - N. M. Zinchenko
TI  - Strong invariance principle for a superposition of random processes
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 130
EP  - 138
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a14/
LA  - en
ID  - THSP_2010_16_1_a14
ER  - 
%0 Journal Article
%A N. M. Zinchenko
%T Strong invariance principle for a superposition of random processes
%J Teoriâ slučajnyh processov
%D 2010
%P 130-138
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a14/
%G en
%F THSP_2010_16_1_a14
N. M. Zinchenko. Strong invariance principle for a superposition of random processes. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 130-138. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a14/

[1] I. Berkes, H. Dehling, D. Dobrovski, W. Philipp, “A strong approximation theorem for sums of random vectors in domain of attraction to a stable law”, Acta Math. Hung., 48:1-2 (1986), 161–172

[2] A. V. Bulinski, A. P. Shashkin, Limit Theorems for Associated Random Fields and Related Systems, Fizmatlit, Moscow, 2008 (in Russian)

[3] M. Csörgő, P. Révész, Strong Approximation in Probability and Statistics, Acad. Press., New York, 1981

[4] M. Csörgő, L. Horváth, Weighted Approximation in Probability and Statistics, Wiley, New York, 1993

[5] I. I. Gikhman, A. V. Skorokhod, The Theory of Stochastic Processes, v. II, Springer, Berlin, 1975

[6] Z. Y. Lin, C. R. Lu, Strong Limit Theorems, Kluwer Science Press, Hong Kong, 1992

[7] G. Morrow, “Invariance principle for Gaussian sequences”, Z. Wahr. verw. Geb., 52 (1980), 115–126

[8] W. Philipp, “Invariance principle for independent and weakly dependent r.v.”, Dependence in Probability and Statistics: A Survey of Recent Results, eds. E. Eberlein and M.S.Taqqu, Birkhäuser, Boston, 1986

[9] D. Silvestrov, Limit Theorems for Randomly Stopped Stochastic Processes, Springer, London, 2004

[10] A. V. Skorokhod, Studies in the Theory of Random Processes, Kiev Univ., Kiev, 1961 (in Russian)

[11] V. Strassen, “An invariance principle for the LIL”, Z. Wahr. verw. Geb., 3 (1964), 211–226

[12] V. Strassen, “Almost sure behavior for sums of independent r.v. and martingales”, Pros. 5th Berkeley Symp., 2 (1965), 315–343

[13] W. Whitt, Stochastic-Processes Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues, Springer, New York, 2002

[14] W. Wu, “Strong invariance principle for dependent random variables”, Annals of Probability, 35:6, 2294–2330

[15] N. Zinchenko, “The strong invariance principle for sums of r.v. in the domain of attraction of a stable law”, Teor. Verojatnost. i Primen., 30:1 (1985), 131–135

[16] N. Zinchenko, “Asymptotics of increments of the stable processes with the jumps of one sign”, Theory Probab. Appl., 32 (1987)

[17] N. Zinchenko, “The Skorokhod representation and strong invariance principle”, Teor. Imovirnost. ta Mat. Statyst., 60 (2000), 51–63

[18] N. Zinchenko, “The strong invariance principle for renewal and randomly stopped processes”, Theory of Stoch. Processes, 13(29):4 (2007), 233–245

[19] N. Zinchenko, M. Safonova, “Erdös–Renyi type law for random sums with applications to claim amount process”, Journal of Numerical and Applied Mathematics, 96:1 (2008), 246–264

[20] H. Yu, “A strong invariance principle for associated sequences”, Annals of Probability, 24:4 (1996), 2079–2097