Strong invariance principle for a superposition of random processes
Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 130-138

Voir la notice de l'article provenant de la source Math-Net.Ru

The strong invariance principle (SIP) is proved for a superposition of random processes $S(N(t))$ under rather general assumptions on $S(t)$ and $N(t)$. As a consequence, a number of SIP-type results are obtained for random sums and used to investigate their rate of growth and fluctuation of increments.
Keywords: Invariance principle, randomly stopped process, Lévy process, renewal process, stable process, stationary sequences, risk process, rate of growth.
Mots-clés : domain of attraction
@article{THSP_2010_16_1_a14,
     author = {N. M. Zinchenko},
     title = {Strong invariance principle for a superposition of random processes},
     journal = {Teori\^a slu\v{c}ajnyh processov},
     pages = {130--138},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a14/}
}
TY  - JOUR
AU  - N. M. Zinchenko
TI  - Strong invariance principle for a superposition of random processes
JO  - Teoriâ slučajnyh processov
PY  - 2010
SP  - 130
EP  - 138
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a14/
LA  - en
ID  - THSP_2010_16_1_a14
ER  - 
%0 Journal Article
%A N. M. Zinchenko
%T Strong invariance principle for a superposition of random processes
%J Teoriâ slučajnyh processov
%D 2010
%P 130-138
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a14/
%G en
%F THSP_2010_16_1_a14
N. M. Zinchenko. Strong invariance principle for a superposition of random processes. Teoriâ slučajnyh processov, Tome 16 (2010) no. 1, pp. 130-138. http://geodesic.mathdoc.fr/item/THSP_2010_16_1_a14/